350 rub
Journal Nanotechnology : the development , application - XXI Century №4 for 2023 г.
Article in number:
Investigation of characteristics of a slot line with the slot shift to the edge of dielectric substrate
Type of article: scientific article
DOI: https://doi.org/10.18127/j22250980-202304-06
UDC: 621.371.334
Authors:

S.B. Klyuev1, V.A. Iovdalskiy2, V.V. Demshevsky3, V.P. Marin4

1–3 JSC "RPC "Istok" named after Shokin" (Fryazino, Russia)
4 MIREA – Russian Technological University of the Ministry of Education and Science of the Russian Federation (Moscow, Russia)
1 klyuev194@mail.ru, 2 teh.buro208@gmail.com

Abstract:

A symmetric slot line, like other types of lines based on it, are the basic transmission lines in designing various circuits, nodes, units, etc., as well as in constructing patch antennas, phased arrays and active electronically scanned arrays based on them. The basic version of the symmetric slot line is characterized by a high value of wave resistance, which limits its wide application in circuits of microwave devices, and low insertion losses. The expansion of its application is possible to improve the electrical characteristics, associated with a change in the design of the line.

The electric characteristics of symmetric slot line are improved by upgrading its design. The prospects of using slot lines in multilayer structures for radio electronic equipment of different purposes, created on their basic elements, are substantiated, their application in the design of hybrid microwave integrated circuits, patch antennas are determined, S-parameters and wave resistance of the studied waveguide structure are specified.

A mathematical model of a slot line with the shift of the slot center was developed using the finite element method, and the best position of the slot in this waveguide structure was chosen. By the calculated numerical method of finite elements, dependences of S-parameters in 5.0–14.0 GHz frequency band, characteristics of various versions of transmission lines were obtained: a symmetric slot line and a slot line with a slot center shift. A sample of a slot line with a slot center shift was made and its characteristics were experimentally investigated.  A comparative evaluation of the calculation and the obtained experimental data of the main electrodynamic characteristics of the slot line with a slot center shift was made, as a result of which the practical identity of solving the electrodynamic problem for this line was established both numerically and in a practical way. The obtained results confirm the expediency of using a slot line with a slot center shift as basic elements, for example, in integrated circuits, devices and other microwave components, as well as in patch antennas.

The obtained results of the research made it possible to create a multilayer transition based on two types of transmission lines, which will be used to create basic elements in the process of developing new designs of AESA receiving and transmitting modules with improved electrical and mass-dimensional characteristics, which will solve several important tasks of microwave and EHF technology: to increase the degree of miniaturization, electromagnetic compatibility, as well as efficiency and reliability in production of integrated circuit assemblies, etc.

Pages: 53-63

Klyuev S.B., Iovdalskiy V.A., Demshevsky V.V., Marin V.P. Investigation of characteristics of a slot line with the slot shift to the edge of dielectric substrate. Nanotechnology: development and applications – XXI century. 2023. V. 15. № 4. P. 53–63. DOI: https://doi.org/10.18127/j22250980-202304-06 (in Russian)

References
  1. Gvozdev V.I., Nefyodov E.I. Ob"yomnye integral'nye skhemy SVCh. M.: Nauka. 1985. 256 s.
  2. Yashin A.A., Kandlin V.V., Plotnikova L.N. Proektirovanie mnogofunkcional'nyh ob"emnyh integral'nyh modulej SVCh i KVCh diapazonov: Monografiya. Pod red. E.I. Nefedova. M.: NTC «Informtekhnika». 1992. 324 s.
  3. Pimenov Yu.V., Vol'man V.I., Muravcov A.D. Ucheb. posobie dlya vuzov. Pod red. Yu.V. Pimenova. M.: Radio i svyaz'. 2000. 536s.
  4. Demshevskij V.V., Bogachyov I.A. Vliyanie sposoba vozbuzhdeniya na harakteristiki mikropoloskovoj patch-antenny H-diapazona. VIII Vseros. nauchno-tekhn. konf. «Elektronika i mikroelektronika SVCh». 2019. T. 1. S. 146–150.
  5. Fomin D.G., Dudarev N.V., Darovskih S.N. Sopostavlenie znachenij elektrodinamicheskih parametrov simmetrichnoj shchelevoj linii, poluchennyh raznymi metodami. Radiotekhnika. 2021. T. 85. № 4. C. 138–146.
  6. Usanov D.A., Nikitov S.A, Skripal' A.V., Ryazanov D.S. Tammovskie sostoyaniya v breggovskih geterostrukturah na volnovodno-shchelevyh liniyah. Zhurnal tekhnicheskoj fiziki. 2018. T. 88. Vyp. 7. S. 1046–1049.
  7. Usanov D.A., Nikitov S.A, Skripal' A.V., Ponomarev D.V. Odnomernye SVCh fotonnye kristally. Novye oblasti primeneniya. M.: FIZMATLIT. 2018. 184 s.
  8. Ryndin E.A. Metody resheniya zadach matematicheskoj fiziki. Taganrog: Izd-vo TRTU. 2003. 120 s.
  9. Rektoris K. Variacionnye metody v matematicheskoj fizike i tekhnike. Per. s angl. pod red. K.I. Babenko, B.E. Pobedri. M.: Mir. 1985. 589 s.
  10. Samarskij A.A. Vvedenie v chislennye metody. Uchebn. posobie dlya vuzov. Izd. 2-e. M.: Nauka. 1987. 288 s.
  11. Grigor'ev A.D. Elektrodinamika i tekhnika SVCh: Uchebnik dlya vuzov. M.: Vysshaya shkola. 1990. 335 s.
  12. Grigor'ev A.D. Elektrodinamika i mikrovolnovaya tekhnika: Uchebnik. Izd. 2-e, dop. SPb.: Lan'. 2022. 704 s.
  13. Gupta K., Gardzh R., Chadha R. Mashinnoe proektirovanie SVCh ustrojstv. Per s angl. M.: Radio i svyaz'. 1987. 432 s.
  14. Malyshev V.A., Chervyakov G.G., Labyncev V.A. Osnovy elektrodinamiki i mikrovolnovoj tekhniki. Uchebnoe posobie. Taganrog: Izd-vo TTI YuFU. 2008. 596 s.
  15. Klyuev S.B., Nefedov E.I., Potapov A.A. Simmetrichnaya shchelevaya liniya s dielektricheskoj vstavkoj. Desyataya vseros. konf. «Neobratimye processy v prirode i tekhnike». Tr. v 3 ch. Moskva, 29–31 yanvarya 2019 g. Ch. 1. S. 39–41.
  16. Klyuev S.B., Nefyodov E.I. and Potapov A.A. Symmetrical slot line with a dielectric insert in the slot. Journal of Physics: Conf. Ser. 2019. V. 1348. No 012015. 5 p. doi: 10.1088/1742-6596/1348/1/012015
  17. Fomin D.G., Dudarev N.V., Darovskih S.N. Chastotno-perestraivaemoe ustrojstvo na osnove mnogoslojnogo poloskovo-shchelevogo perekhoda i ego primenenie dlya izmereniya dielektricheskih svojstv materialov. Ural Radio Engineering Journal. 2021; 5(3):225–238. DOI: 10.15826/urej.2021.5.3.002
  18. TU 6366-000-07593894-2013. Podlozhka. Tekhnicheskie usloviya.
  19. Klyuev S.B., Demshevskij V.V. Elektrodinamicheskoe modelirovanie mnogoslojnogo perekhoda dlya integral'nyh skhem SVCh. Elektronnaya tekhnika. Ser. 1. SVCh-tekhnika. 2023. Vyp. 3 (559). S. 96–101.
  20. Nefedov E.I., Kozlovskij V.V., Zgurskij A.V. Mikropoloskovye izluchayushchie i rezonansnye ustrojstva. Kiev: Tekhnika. 1990. 158 s.
  21. Nefedov E.I., Saidov A.S., Tagilaev A.R. Shirokopolosnye mikropoloskovye upravlyayushchie ustrojstva SVCh. M.: Radio i svyaz'. 1994. 168 s.
  22. Klyuev S.B., Nefyodov E.I., Chernikova T.Yu. Soglasuyushchij perekhod mezhdu nesimmetrichnymi shchelevoj i ryoberno-dielek­tricheskoj liniej. Avtomatizaciya i sovremennye tekhnologii. 2010. № 8. S. 3–6.
  23. https://products.rosenberger.com/_ocassets/db/19S202-40ML5.pdf
  24. Dzhurinskij K., Sotnikov A. Radiochastotnye soediniteli SMC i SSMC. SVCh elektronika. 2016. № 1. S. 10–14.
  25. www.hubersuhner.com / HUBER+SUHNER® DATA SHEET Coaxial Cable: EZ_86_TP_M17
  26. Dzhurinskij K., Bataev V., Legenkin S., Levashov M. Soediniteli SMP. Osnovnye tipy, parametry i primenenie. Elektronika: Nauka, Tekhnologiya, Biznes. 2015. № 6(00146). S. 1–8.
Date of receipt: 06.11.2023
Approved after review: 17.11.2023
Accepted for publication: 20.11.2023