S.G. Vesnin1, M.K. Sedankin2, V.Yu. Leushin3, N.S. Maksimov4, S.V. Agasieva5
1–3,5 RUDN University (Moscow, Russia)
1 RTM Diagnostics LLC (Moscow, Russia)
2,4 National Research University «Moscow Energy Institute» (Moscow, Russia)
1 vesnin47@gmail.com; 2 msedankin@yandex.ru
Issues of noise immunity of antennas for microwave radiometers are of paramount importance, since a microwave radiometer measures very weak electromagnetic radiation from human tissue, and personal computers, telephones, and various wireless devices emit significantly higher power levels. Therefore, unless special measures are taken to increase the noise immunity of antennas, microwave radiometers will not be able to operate in medical centers. In particular, the problem of noise immunity is relevant when designing flexible printed antennas for a multichannel radiometer, because in this case it is impossible to increase the height of the antenna.
The purpose of this article is to present a low-profile printed antenna for a multi-channel microwave radiometer with high noise immunity.
The proposed printed antenna in the form of an eight has a high level of noise immunity (35 dB), which is 10–15 dB higher than the same parameter of traditional printed antennas. The measurement depth for breast tissue at a frequency of 3,8 GHz was 45 mm, which is 50% higher than the measurement depth of the ring antenna.
The development of a low-profile printed antenna with high noise immunity and a high measurement depth opens up the possibility of creating multi-channel microwave radiometer that can operate in medical centers without special shielding of the room.
Vesnin S.G., Sedankin M.K., Leushin V.Yu., Maksimov N.S., Agasieva S.V. On the issue of increasing the noise immunity of printed antennas for a multichannel microwave radiometer. Nanotechnology: development and applications – XXI century. 2023. V. 15. № 4.
P. 20–24. DOI: https://doi.org/10.18127/j22250980-202304-02 (in Russian)
- Vesnin S.G., Sedankin M.K. Primenenie sovremenny`x mikrovolnovy`x radiotermografov v medicinskoj praktike. Nanotexnologii: razrabotka i primenenie – XXI vek. 2023. T. 15. № 2. S. 48–63. DOI: https://doi.org/10.18127/j22250980-202302-05
- Vesnin S.G., Nizhnev V.V., Sedankin M.K. i dr. Miniatyurny`e polosno-propuskayushhie fil`try` dlya mikrovolnovy`x radiotermografov. Nanotexnologii: razrabotka, primenenie – XXI vek. 2023. T. 15. № 3. S. 5–10. DOI: https://doi.org/10.18127/j22250980-202303-01
- Agasieva S.V. et al. A Conformal Medical Antenna Based on a Flexible Substrate. Biomedical Engineering. 2023. T. 56. №. 6. S. 373–377.
- Vesnin S.G. et al. A printed antenna with an infrared temperature sensor for a medical multichannel microwave radiometer. Biomedical Engineering. 2020. T. 54. S. 235–239.
- Andreuccetti D., Fossi R. and Petrucci C. An Internet resource for the calculation of the dielectric properties of body tissues in the frequency range 10 Hz – 100 GHz. IFAC-CNR, Florence (Italy). 1997. [Online]. Available at: https://itis.swiss/virtual-population/tissue-properties/database/dielectric-properties/
- Leushin V.Y. et al. Possibilities of increasing the interference immunity of radiothermograph applicator antennas for brain diagnostics. Sensors and Actuators A: Physical. 2022. T. 337. S. 113439.