350 rub
Journal Nanotechnology : the development , application - XXI Century №4 for 2023 г.
Article in number:
On the issue of choosing channels and frequency ranges of a multichannel multi-frequency medical radiothermograph
Type of article: scientific article
DOI: https://doi.org/10.18127/j22250980-202304-01
UDC: 621.382
Authors:

M.K. Sedankin1, A.G. Gudkov2, I.A. Sidorov3, V.Yu. Leushin4, S.V. Chizhikov5, Yu.V. Solov’ev6, R.V. Agandeev7, A.V. Khaustova8

1–7 Bauman Moscow State Technical University (National Research University) (Moscow, Russia)
8 Moscow Power Engineering Institute (Moscow, Russia)
1 msedankin@yandex.ru, 2 profgudkov@gmail.com, 3 igorasidorov@yandex.ru, 4 ra3bu@yandex.ru, 5 chigikov95@mail.ru, 7 rom20001511@gmail.com, 8 KhaustovaAV@mpei.ru

Abstract:

The choice of channels and frequency ranges can significantly affect the effectiveness of measurement diagnostics and the efficiency of the radiothermograph in various medical tasks.

The purpose of the work is to determine the optimal design parameters for the operation of the radiothermograph in order to obtain the most accurate and reliable results.

The optimal choice of channels and frequency ranges depends on the specific medical tasks of the radiothermograph. For example, in some cases, it may be preferable to use high-frequency bands to more effectively detect pathology, while in other situations, low-frequency bands may be more preferable.

The data obtained make it possible to determine the optimal parameters for the operation of a multichannel multi-frequency radiothermograph for various medical tasks. This is of great importance for the practical application of the radiothermograph in various fields of medicine. Optimization of the operation and design of the radiothermograph will increase its efficiency and measurement accuracy, which in turn contributes to improving the quality of the data obtained and the results of medical imaging.

The research was carried out with the financial support of the Russian science Foundation in the framework of agreement No. 19-19-00349-P in the theme: «A method and a multichannel multifrequency microwave radiometryon the basis of monolithic integrated circuits for finding the 3D distribution and dynamics of brightness temperature in the depths of the human body».

Pages: 5-19
References
  1. Carr K.L. Microwave radiometry: Its importance to the detection of cancer. IEEE Trans. Microw. Theory Techn. 1989. V. 37. № 12.
    P. 1862–1869.
  2. Groumpas E.I., Koutsoupidou M., Karanasiou I.S. Biomedical Passive Microwave Imaging and Sensing: Current and future trends [Bio­electromagnetics]. IEEE Antennas and Propagation Magazine. 2022. V. 64. № 6. P. 84–111.
  3. Li J. et al. Dynamic weight agnostic neural networks and medical microwave radiometry (MWR) for breast cancer diagnostics. Diag-nostics. 2022. V. 12. № 9. P. 2037.
  4. Land D.V. Medical microwave radiometry and its clinical applications. IEE Colloquium on Application of Microwaves in Medicine,
    28–28 February 1995, London, UK. P. 1–5.
  5. Fraser S.M., Land D.V. and Sturrock R.D. Microwave thermography – an index of inflammatory disease. Br. J. Rheumatology. 1987. V. 26. P. 37–39.
  6. Laskari K. et al. Microwave radiometry for the diagnosis and monitoring of inflammatory arthritis. Diagnostics. 2023. V. 13. № 4. P. 609.
  7. Zampeli E. et al. Detection of subclinical synovial inflammation by microwave radiometry. PloS One 8, 2013. e64606.
  8. Tarakanov A.V. et al. Microwave radiometry (MWR) temperature measurement is related to symptom severity and duration in patients with low back pain. Journal of Bodywork and Movement Therapies. 2021. V. 26. P. 548–552.
  9. Drakopoulou M. et al. The role of microwave radiometry in carotid artery disease. Diagnostic and clinical prospective. Curr. Opin. Pharmacol. 2018. V. 39. P. 99–104.
  10. Zamechnik T.V., Larin S.I., Losev A.G. Kombinirovannaya radiotermometriya kak metod issledovaniya venoznogo krovoobrashheniya nizhnix konechnostej. Volgograd: Izd-vo Volgogradskogo gos. med. un-t. 252 s.
  11. Kaprin A.D. et al. Microwave radiometry in the diagnosis of various urological diseases. Biomed. Eng. 2019. V. 53. P. 87–91.
  12. Rodrigues D.B. et al. Microwave radiometry for noninvasive monitoring of brain temperature / In Emerging Electromagnetic Techno­logies for Brain Diseases Diagnostics, Monitoring and Therapy (Crocco, L., ed.). Springer. 2018. pp. 87–127.
  13. Goryanin I. et al. Passive microwave radiometry in biomedical studies. Drug Discovery Today. 2020. V. 25. № 4. P. 757–763.
  14. Berezhnaya M.A., Amcheslavskij V.G. Sistematicheskij obzor metodov termomonitoringa v pediatricheskom otdelenii reanimacii i intensivnoj terapii. Detskaya xirurgiya. 2020. T. 24. № 1. S. 35–39.
  15. Berezhnaya M.A., Amcheslavskij V.G. Temperaturny`j gomeostaz pri kriticheskix sostoyaniyax u detej v ostrom periode tyazhyoloj mexanicheskoj travmy`. Detskaya xirurgiya. 2020. T. 24. № S1. S. 26.
  16. Shevelev O.A. i dr. Metod mikrovolnovoj radiotermometrii v issledovaniyax cirkadny`x ritmov temperatury` golovnogo mozga. Byulleten` e`ksperimental`noj biologii i mediciny`. 2022. T. 173. № 3. S. 380–383.
  17. Shevelev O.A. et al. Diagnostics and prevention of sports-related traumatic brain injury complication. RUDN Journal of Medicine. 2023. V. 27. № 2. P. 254–264.
  18. Prudhomme T. et al. Ischemia-reperfusion injuries assessment during pancreas preservation. International Journal of Molecular
    Sciences. 2021. V. 22. № 10. P. 5172.
  19. Popovic Z., Momenroodaki P., Scheeler R. Toward wearable wireless thermometers for internal body temperature measurements. IEEE Communications Magazine. 2014. V. 52. № 10. P. 118–125.
  20. Sedankin M.K. i dr. Primenenie mikrovolnovoj radiotermometrii v dermatologii. Texnologii zhivy`x sistem. 2023. № 1. S. 46–54.
  21. Sedankin M.K., Gudkov A.G., Leushin V.Y. et al. Microwave radiometry of the pelvic organs. Biomedical Engineering. 2019. V. 53. № 4. P. 288–292.
  22. Sedankin M.K. i dr. Vnutripolostnaya antenna dlya mnogokanal`nogo radiotermografa. Nanotexnologii: razrabotka, primenenie – XXI vek. 2021. T. 13. № 2. S. 36–44.
  23. Sedankin M.K. et al. Intracavity thermometry in medicine. Biomedical Engineering. 2021. V. 55. № 3. P. 224–229.
  24. Czomaeva E.A. Klinicheskoe znachenie radiotermometrii v diagnostike i differencial`noj diagnostike zabolevanij organov malogo taza: Avtoref. dis. … kand. med. nauk. M., 2012. 27 s.
  25. Galustyan M.V. i dr. Vozmozhnosti prognozirovaniya nesostoyatel`nosti rubcza na matke posle operacii kesareva secheniya. Medicinskij vestnik yuga Rossii. 2021. T. 12. № 1. S. 54–61.
  26. Kucenko I.I. i dr. Perspektivy` mikrovolnovoj radiotermometrii v rannej diagnostike e`ndometrita i nesostoyatel`nosti shva na matke posle abdominal`nogo rodorazresheniya // Doktor.Ru. 2023. T. 22. № 1. S. 47–55.
  27. Sedankin M.K. Modelirovanie teplovy`x processov v predstatel`noj zheleze pri nalichii opuxoli. Medicinskaya texnika. 2023. № 2. S. 40–43.
  28. Osmonov B. et al. Passive microwave radiometry for the diagnosis of coronavirus disease 2019 lung complications in Kyrgyzstan. Diagnostics. 2021. V. 11. № 2. 259.
  29. Emilov B. et al. Diagnostic of Patients With COVID-19 Pneumonia Using Passive Medical Microwave Radiometry (MWR). 2023. Preprints.org 2023. 2023040971. https://doi.org/10.20944/preprints202304.0971.v1
  30. Hand J.W. et al. Monitoring of deep brain temperature in infants using multi-frequency microwave radiometry and thermal modelling. Physics in Medicine and Biology. 2001. V. 46. № 7. R. 1885.
  31. Stauffer Paul R. et al. Microwave radiometry for noninvasive detection of vesicoureteral reflux (VUR) following bladder warming. 22 Feb.2011Proc. SPIE 7901, Energy-based Treatment of Tissue and Assessment VI, 79010V.
  32. Shevelev O.A. et al. Study of brain circadian rhythms in patients with chronic Disorders of consciousness and healthy individuals using microwave radiometry. Diagnostics. 2022. V. 12. № 8. P. 1777.
  33. Crandall J.P. et al. Measurement of brown adipose tissue activity using microwave radiometry and 18F-FDG PET/CT. J. Nucl. Med. 2018. V. 59. P. 1243–1248.
  34. Spiliopoulos S. et al. Multi-center feasibility study of microwave radiometry thermometry for non-invasive differential diagnosis of arterial disease in diabetic patients with suspected critical limb ischemia. J. Diabetes Complications. 2017. V. 31. P. 1109–1114.
  35. Vetshev P.S. i dr. Radiotermometriya v diagnostike zabolevanij shhitovidnoj zhelezy`. Xirurgiya. Zhurnal im. N.I. Pirogova. 2006. № 6. S. 54–58.
  36. Zinovyev S.V. New medical technology – functional microwave thermography: experimental study. KnE Energy 2018. P. 547–555.
  37. Vasyutina M.L., Pechnikova N.A., Toropova Ya.G. Metody` vizualizacii i analiza sostoyaniya mikrocirkulyatornogo rusla v veterinarnoj i e`ksperimental`noj praktike. Laboratorny`e zhivotny`e dlya nauchny`x issledovanij. 2019. № 2. S. 7.
  38. Sazonova V.V., Krajs V.V., Mishina I.I. Diagnostika opuxolej molochny`x zhelez sobak na osnove metoda radiotermometrii. Vestnik Kurskoj gosudarstvennoj sel`skoxozyajstvennoj akademii. 2020. № 9. S. 74–77.
  39. Marechek S.V., Pavlova L.S., Polyakov V.M. i dr. K vozmozhnosti SVCh-radiometricheskogo kontrolya rektal`noj temperatury` sel`skoxozyajstvenny`x zhivotny`x. Vses. konf. «Zvenigorod-84»: Tez. dokl. M., 1984. S. 47.
  40. Efremov E.V. Osnashhenie medicinskoj robototexniki medicinskimi sredstvami i apparaturoj podderzhaniya osnovny`x zhiznenny`x funkcij cheloveka / XV mezhdunar. nauchno-prakt. konf. «Aktual`ny`e voprosy` v nauke i praktike». 1 marta 2019 g. Samara, S. 17–22.
  41. Villa E. et al. Multifrequency microwave radiometry for characterizing the internal temperature of biological tissues. Biosensors. 2022. V. 13. № 1. P. 25.
  42. Rodrigues D.B., Stauffer P.R., Pereira P.J. and Maccarini P.F. Microwave radiometry for noninvasive monitoring of brain temperature in emerging electromagnetic technologies for brain diseases diagnostics, monitoring and therapy, L. Crocco, I. Karanasiou, M. James, and R. Conceição, Eds. Cham, Switzerland: Springer International Publishing. 2018. R. 87–127.
  43. Vesnin S.G. et al. Portable microwave radiometer for wearable devices. Sensors Actuators A, Phys. 2021. V. 318. P. 112.
  44. Oficial`ny`j sajt: http://www.radiometry.ru/rtm-01-res/description
  45. Oficial`ny`j sajt: http://www.rtmdiagnostics.com
  46. Zhurbenko V. Challenges in the design of microwave imaging systems for breast cancer detection. Advances in Electrical and Com-puter Engineering. 2011. V. 11. № 1. P. 91–96.
  47. Vesnin S.G. i dr. Vliyanie koe`fficienta otrazheniya antenny` na rezul`taty` izmereniya miniatyurnogo mikrovolnovogo ra-diotermometra. Medicinskaya texnika. 2023. № 2. S. 8–11.
  48. Vesnin S.G. et al. Portable microwave radiometer for wearable devices. Sensors and Actuators A: Physical. 2021. V. 318. P. 112506.
  49. Sedankin M.K. i dr. Diagnosticheskaya konformnaya sistema dlya nejrovizualizacii golovnogo mozga s ispol`zovaniem mno-gokanal`nogo radiotermometra na osnove monolitny`x integral`ny`x sxem. Nanotexnologii: razrabotka, primenenie – XXI vek. 2020. T. 12. № 1. S. 5–12.
  50. Gudkov A.G. i dr. Principy` postroeniya mnogokanal`nogo mnogochastotnogo radiotermografa na osnove monolitny`x integral`ny`x sxem. Uspexi sovremennoj radioe`lektroniki. 2020. T. 74. № 10. S. 30–49.
  51. Villa E. et al. 3.5-GHz pseudo-correlation type radiometer for biomedical applications. AEU Int. J. Electron. Commun. 2021. V. 130. № 12. 153558.
  52. Mnogokanal`ny`j mikrovolnovy`j radiotermograf dlya monitoringa temperatury` golovnogo mozga. Medicinskaya texnika. 2023. № 4. S. 1–3.
  53. Sedankin M.K. i dr. Matematicheskoe modelirovanie teploobmenny`x processov v golovnom mozge pri nalichii patologii dlya proektirovaniya mikrovolnovogo radiotermografa. Medicinskaya Texnika. 2023. № 4. S. 33–36.
Date of receipt: 30.10.2023
Approved after review: 09.11.2023
Accepted for publication: 20.11.2023