350 rub
Journal Nanotechnology : the development , application - XXI Century №3 for 2023 г.
Article in number:
Arthrospira platensis growth control system in semi-industrial environment
Type of article: scientific article
DOI: https://doi.org/10.18127/j22250980-202303-03
UDC: 582.232:57.083.13
Authors:

А.А. Chekushkin1, A.S. Gulin2, A.S. Lelekov3

1–3 A.O. Kovalevsky Institute of Biology of Southern Seas of RAS (Sevastopol, Russia)
 

Abstract:

The paper proposes the design of a device based on the Arduino platform for obtaining data on the biomass of micro-algae, the temperature of the cultural suspension and the irradiation of the pool surface during semi-industrial cultivation of A. platensis. The task was to offer the simplest possible design, consisting of widely available components. In the course of the work, sensor designs were developed, calibration curves were taken, and correction factors were calculated that are necessary for using this device. The device includes a temperature, irradiance and optical density sensor connected to the Arduino Mega platform. The data from the sensors are displayed on the LCD screen and recorded on the Micro SD card.

Pages: 23-31
For citation

Chekushkin A.A., Gulin A.S., Lelekov A.S. Arthrospira platensis growth control system in semi-industrial environmet. Nanotechnology: development and applications – XXI century. 2023. V. 15. № 3. P. 23–31. DOI: https://doi.org/10.18127/j22250980-202303-03 (in Russian)

References
  1. Minyuk G.S., Drobeckaya I.V., Chubchikova I.N., Terent'eva N.V. Odnokletochnye vodorosli kak vozobnovlyaemyj biologicheskij resurs: obzor. Morskoj ekologicheskij zhurnal. 2008. T. 7 (2). S. 5–23 (in Russian).
  2. Borovkov A.B., Gudvilovich I.N. Aprobaciya dvuhstadijnogo vyrashchivaniya Dunaliella salina Teod. v polupromyshlennyh usloviyah. Voprosy sovremennoj al'gologii. 2017. № 1 (13). URL: http://algology.ru/1155 (in Russian).
  3. Lafarga, T.; Fernandez-Sevilla, J.M.; Gonzalez-Lopez, C.; Acien-Fernandez, F.G. Spirulina for the food and functional food Industries. Food Res. Int. 2020. V. 137. DOI: https://doi.org/10.1016/j.foodres.2020.109356.
  4. Torzillo G., Sacchi A., Materassi R., Richmond A. Effect of temperature on yield and night biomass loss in Spirulina platensis grown outdoors in tubular photobioreactors. Journal of Applied Phycology. 1991. V. 3, P. 103–109. DOI: https://doi.org/10.1007/BF00003691.
  5. Jallet D., Caballero M.A., Gallina A.A., Youngblood M., Peers G. Photosynthetic physiology and biomass partitioning in the model diatom Phaeodactylum tricornutum grown in a sinusoidal light regime. Algal Research. 2016. V. 18. Р. 51–60. DOI: https://doi.org/10.1016/j.algal.2016.05.014.
  6. Varfolomeev S.D., Gurevich K.G. Biokinetika: Prakticheskij kurs. M.: FAIR – PRESS/ 1999. C. 720 (in Russian).
  7. Borowitzka M.A., Borowitzka L.J. Microalgal biotechnology. Cambridge: Cambridge Univ. Press. 1998. P. 480.
  8. Sandnes J.M., Ringstad T., Wenner D., Heyerdahl P.H., Källqvist T., Gislerød H.R. Real-time monitoring and automatic density control of large-scale microalgal cultures using near infrared (NIR) optical density sensors. J. Biotech. 2006. V. 122. P. 209–215. DOI: https://doi.org/10.1016/j.jbiotec.2005.08.034.
  9. Fei J., Murat K., Kimberly L.O. Multi-Wavelength Based Optical Density Sensor for Autonomous Monitoring of Microalgae. Sensors. 2015. Vol. 15, P. 22234–22248. DOI: https://doi.org/10.3390/s150922234.
  10. Briassoulis D., Panagakis P., Chionidis M., Tzenos D., Lalos A., Tsinos C., Berberidis K., Jacobsen A. An experimental helical-tubular photobioreactor for continuous production of Nannochloropsis sp. Bioresour. Technol. 2010. V. 101. P. 6768–6777. DOI: https://doi.org/10.1007/s00253-015-6876-7.
  11. Yao Y. Development of an algal optical density sensor. ASABE, 2013.
  12. Nedbal L., Trtílek M., Červený J., Komárek O., Pakrasi H.B. A photobioreactor system for precision cultivation of photoautotrophic microorganisms and for high-content analysis of suspension dynamics. Biotechnol. Bioeng. 2008. V. 100. P. 902–910.
  13. Nikitina Z.K., Nasibov E.M., Gordonova I.K., Savin P.S. Vliyanie uslovij kul'tivirovaniya Aspergillus fumigatus na sekreciyu kollagenoliticheskih proteaz. Tekhnologii zhivyh sistem. 2023. T. 20. № 2. S. 53–62. DOI: https://doi.org/10.18127/ j20700997-202302-06
Date of receipt: 10.08.2023
Approved after review: 24.08.2023
Accepted for publication: 31.08.2023