350 rub
Journal Nanotechnology : the development , application - XXI Century №2 for 2023 г.
Article in number:
Modern microwave radiometer for medical practice
Type of article: scientific article
DOI: https://doi.org/10.18127/j22250980-202302-05
UDC: 621.382
Authors:

S.G. Vesnin1, M.K. Sedankin2

1,2 Bauman Moscow State Technical University (Moscow, Russia)

Abstract:

An increase in the temperature of internal tissues is usually associated with malignant growth, with inflammatory processes, atypical changes, increased proliferation and increased blood flow. A decrease in core temperature is usually associated with a decrease in blood flow. It should also be noted that thermal changes occur at the earliest stage of malignant growth – at the stage of pronounced proliferation and atypical hyperplasia, when there is no malignant tumor yet, but there is a very high risk of malignancy. This opens up the possibility of using the radiometric method for preventive examinations. Microwave radiometer allows non-invasive detection of thermal anomalies at a depth of several centimeters.

The purpose of the work is to acquaint the reader with modern microwave radiometers that are used in medical practice and to formulate the requirements for modern microwave radiometers.

A description of the RTM-01-RES microwave radiometer, which was used for research and clinical trials in various fields of medicine in many countries of the world, is presented. The features of the construction of a microwave radiometer, which made it possible to ensure high measurement accuracy and stability of readings, are described. The technical requirements for microwave radiometers designed to detect thermal anomalies in the patient's internal tissues are discussed.

Numerous studies conducted over the past 20 years have demonstrated the significant potential of microwave radiometry in various fields of medicine. Microwave radiometry is a universal dose-free means of monitoring the functional state of the body.

The research was carried out with the financial support of the Russian science Foundation in the framework of agreement No. 19-19-00349-P in the theme: «A method and a multichannel multifrequency microwave radiometer on the basis of monolithic integrated circuits for finding the 3D distribution and dynamics of brightness temperature in the depths of the human body».

Pages: 48-63
For citation

Vesnin S.G., Sedankin M.K. Modern microwave radiometer for medical practice. Nanotechnology: development and applications – XXI century. 2023. V. 15. № 2. P. 48−63. DOI: https://doi.org/10.18127/j22250980-202302-05 (in Russian)

References
  1. Vesnin S. et al. Modern microwave thermometry for breast cancer. J. Mol. Imaging Dyn. 2017. V. 7. № 2. P. 1000136.
  2. Goryanin I. et al. Passive microwave radiometry in biomedical studies. Drug Discovery Today. 2020. V. 25. № 4. P. 757−763.
  3. Rozhkova N.I., Smirnova N.A., Nazarov A.A. Faktory, vliyayushchie na effektivnost radiotermometricheskikh izmerenii molochnoi zhelezy s pomoshchyu diagnosticheskogo kompleksa RTM-01-RES. Opukholi zhenskoi reproduktivnoi sistemy. 2007. № 3. S. 21−25. (in Russian)
  4. Fisher L. et al. Passive Microwave radiometry and microRNA detection for breast cancer diagnostics. Diagnostics. 2023. V. 13. № 1. P. 118.
  5. Burdina L.M. i dr. Radiotermometriya v algoritme kompleksnogo obsledovaniya molochnykh zhelez. Sovremennaya onkologiya. 2004. T. 6. № 1. S. 8−10. (in Russian)
  6. Burdina L.M. i dr. Sravnitelnyi analiz rezultatov obsledovaniya bolnykh RMZh po dannym rentgeno-mammografi­che­sko­go i radiotermometricheskogo obsledovanii. Sovremennaya onkologiya. 2004. T. 6. № 1. S. 17−8. (in Russian)
  7. Li J. et al. Dynamic weight agnostic neural networks and medical microwave radiometry (MWR) for breast cancer diagnostics. Diagnostics. 2022. V. 12. № 9. P. 2037.
  8. Losev A.G. et al. Some methods for substantiating diagnostic decisions made using machine learning algorithms. Biomedical Engineering. 2022. V. 55. № 6. P. 442−447.
  9. Shevelev O.A. et al. Using medical microwave radiometry for brain temperature measurements. Drug discovery today. 2022. V. 27. № 3. P. 881−889.
  10. Shevelev O.A. et al. Study of brain circadian rhythms in patients with chronic disorders of consciousness and healthy individuals using microwave radiometry. Diagnostics. 2022. V. 12. № 8. P. 1777.
  11. Shevelev O.A. et al. Correction of local brain temperature after severe brain injury using hypothermia and medical microwave radiometry (mwr) as companion diagnostics. Diagnostics. 2023. V. 13. № 6. P. 1159.
  12. Drakopoulou M. et al. The role of microwave radiometry in carotid artery disease. Diagnostic and clinical prospective. Current opinion in pharmacology. 2018. V. 39. P. 99−104.
  13. Toutouzas K. et al. Noninvasive detection of increased carotid artery temperature in patients with coronary artery disease predicts major cardiovascular events at one year: Results from a prospective multicenter study. Atherosclerosis. 2017. V. 262. P. 25−30.
  14. Laskari K. et al. Joint microwave radiometry for inflammatory arthritis assessment. Rheumatology. 2020. V. 59. № 4. P. 839−844.
  15. Tarakanov A.V. et al. Passive microwave radiometry as a component of imaging diagnostics in juvenile idiopathic arthritis. Rheumato. 2022. V. 2. № 3. P. 55−68.
  16. Tarakanov A.V. et al. Microwave radiometry (MWR) temperature measurement is related to symptom severity in patients with low back pain (LBP). Journal of Bodywork and Movement Therapies. 2021. V. 26. P. 548−552.
  17. Khashukoeva A.Z., Tsomaeva E.A., Vodyanik N.D. Primenenie transabdominalnoi i vaginalnoi radiotermometrii v kompleksnoi diagnostike vospalitelnykh zabolevanii pridatkov matki. Lechenie i profilaktika. 2012. № 1. S. 26−30. (in Russian)
  18. Khashukoeva A.Z., Leonova E.I., Kirillova S.N. Radiotermometriya v diagnostike i monitoringe effektivnosti lecheniya pri vospalitelnykh zabolevaniyakh pridatkov matki. Vestnik Rossiiskogo gosudarstvennogo meditsinskogo universiteta. 2009. № 4. S. 98−101. (in Russian)
  19. Kaprin A.D. et al. Microwave radiometry in the diagnosis of various urological diseases. Biomedical Engineering. 2019. V. 53. № 2. P. 87−91.
  20. Avdoshin V.P. i dr. Radiotermometriya v diagnostike ostrogo pielonefrita. Vestnik Rossiiskogo universiteta druzhby narodov. Ser.: Meditsina. 2002. № 2. S. 67−69. (in Russian)
  21. Levshinskii V. et al. Using AI and passive medical radiometry for diagnostics (MWR) of venous diseases. Computer Methods and Programs in Biomedicine. 2022. V. 215. P. 106611.
  22. Zamechnik T.V., Larin S.I., Losev A.G. Kombinirovannaya radiotermometriya kak metod issledovaniya venoznogo krovoobrashcheniya nizhnikh konechnostei. g. Volgograd: Izd-vo VolgGMU. 2015. 252 s. (in Russian)
  23. Zinovev S.V., Ivanov A.V. Funktsionalnaya mikrovolnovaya termografiya pervichnogo ochaga zlokachestvennykh novoobrazovanii: eksperimentalnoe issledovanie. Meditsinskaya fizika. 2017. № 4. S. 51−58. (in Russian)
  24. Zinovyev S.V. New medical technology-functional microwave thermography: experimental study. KnE Energy. 2018. P. 547−555.
  25. Ivanov Y. et al. Use of microwave radiometry to monitor thermal denaturation of albumin. Frontiers in physiology. 2018. P. 956.
  26. Ivanov Y.D. et al. The registration of a biomaser-like effect in an enzyme system with an RTM sensor. Journal of Sensors. 2019. 11 p.
  27. Guseinov T.Yu., Vesnin S.G. Mikrovolnovaya radiotermometriya v diagnostike myshechno-sustavnykh rasstroistv pri tservikogennoi golovnoi boli. Tezisy dokladov Rossiiskoi nauch.-prakt. konf. s mezhdunar. uchastiem "Klinicheskie i teoreticheskie aspekty boli". M. 2001. S. 25−40. (in Russian)
  28. Osmonov B. et al. Passive microwave radiometry for the diagnosis of coronavirus disease 2019 lung complications in Kyrgyzstan. Diagnostics. 2021. V. 11. № 2. P. 259.
  29. Kozlov S.V., Neretin E.Yu. Sravnitelnyi analiz metodov preinvazivnoi diagnostiki melanomy kozhi. Saratovskii nauchno-meditsinskii zhurnal. 2013. T. 9. № 1. S. 88−91. (in Russian)
  30. Vaisblat A.V. Radiotermometriya kak metod diagnostiki v meditsine M.: NTsZD RAMN. 2003. 80 c. (in Russian)
  31. Vesnin S.G. i dr. Mikrovolnovaya radiotermometriya: Ucheb. posobie. M.: RUDN. 2021. 145 s. (in Russian)
  32. Popovic Z., Momenroodaki P., Scheeler R. Toward wearable wireless thermometers for internal body temperature measurements. IEEE Communications Magazine. 2014. V. 52. № 10. P. 118−125.
  33. Momenroodaki P. et al. Noninvasive internal body temperature tracking with near-field microwave radiometry. IEEE Transactions on Microwave Theory and Techniques. 2017. V. 66. № 5. P. 2535−2545.
  34. Haines W. et al. Wireless system for continuous monitoring of core body temperature. MTT-S International Microwave Symposium (IMS). IEEE. 2017. P. 541−543.
  35. Land D.V., Levick A.P., Hand J.W. The use of the Allan deviation for the measurement of the noise and drift performance of microwave radiometers. Measurement Science and Technology. 2007.V. 18. № 7. P. 1917.
  36. Hand J.W. et al. Monitoring of deep brain temperature in infants using multi-frequency microwave radiometry and thermal modelling. Phys. Med. Biol. 2001. P. 1885−190.
  37. Vesnin S.G. et al. Portable microwave radiometer for wearable devices. Sensors and Actuators. A: Physical. 2021. V. 318. P. 112506.
  38. Vesnin S.G., Sedankin M.K. Sravnenie mikrovolnovykh antenn-applikatorov meditsinskogo naznacheniya. Biomeditsinskaya radioelektronika. 2012. № 10. S. 63−74. (in Russian)
Date of receipt: 23.03.2023
Approved after review: 06.04.2023
Accepted for publication: 24.04.2023