350 rub
Journal Nanotechnology : the development , application - XXI Century №2 for 2023 г.
Article in number:
Mathematical modeling of heat exchange processes in a biological object when creating microwave radiothermographs
Type of article: scientific article
DOI: https://doi.org/10.18127/j22250980-202302-04
UDC: 612.563
Authors:

V.Y. Leushin 1, M.K. Sedankin2, E.A. Konyukhova3, N.O. Sapozhnikov4, K.A. Garmazhanova5, S.V. Chizhikov6, V.S. Sinavchian7

1,2,6,7 Bauman Moscow State Technical University (Moscow, Russia)
3–5 Russian Technological University (RTU MIREA) (Moscow, Russia)
 

Abstract:

For the application of microwave radiometry in various areas of medicine, it is necessary to understand the diagnostic capabilities of the method associated with the identification of a specific thermal anomaly (tumor, inflammation, vascular and structural pathology, etc.) of various localization, creating a local temperature increase. An important issue is the mathematical modeling of heat exchange processes in the human body in the presence of pathology based on the construction of a complete mathematical model of organ under study that takes into account the anatomical and thermophysical characteristics of biological tissues.

Purpose: substantiation of the need for mathematical modeling of heat exchange processes in various human organs in the presence of pathology to assess the possibility of using microwave radiometry in various fields of medicine.

The numerical solution of the heat and mass transfer equation for two organs (breast and prostate) in the form of a multilayer structure, taking into account the blood flow and heat release of a malignant tumor, is carried out. The results of calculations of physical temperature in biological tissues in the presence of a tumor are presented. Using the results of mathematical modeling makes it possible to improve the characteristics of medical antennas and radiothermographs.

The results of the conducted research can be used in the creation of multichannel multi-frequency radiothermographs that measure the brightness temperature of biological tissues at various depths, in scientific research when creating phantoms of biological tissues containing malignant neoplasms, as well as when verifying algorithms and programs for restoring 3D temperature fields in biological objects.

The obtained research results can be used in the design of a wide class of microwave radiothermographs used in medicine.

Pages: 38-47
References
  1. Vesnin S.G., Sedankin M.K. Miniatyurnye antenny-applikatory dlya mikrovolnovyh radiotermometrov medicinskogo naznacheniya. Biomedicinskaya radioelektronika. 2011. № 10. S. 51–56 (in Russian).
  2. Vesnin S.G. et al. Modern microwave thermometry for breast cancer. J. of Molecular Imaging & Dynamics. 2017. V. 7. № 2. DOI:10.4172/2155-9937.1000136.
  3. Kulikov E.P. i dr. Diagnosticheskie vozmozhnosti sovremennoj radiotermometrii v onkomammologicheskoj praktike. Rossijskij mediko-biologicheskij vestnik imeni akademika I.P. Pavlova. 2021. T. 29. № 4. S. 531–538 (in Russian).
  4. Gulyaev Yu.V. i dr. Pribory dlya diagnostiki patologicheskih izmenenij v organizme cheloveka metodami mikrovolnovoj radiometrii. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2017. № 2. T. 9. S. 27–45 (in Russian).
  5. Shevelev O.A. et al. Diagnostic opportunities of noninvasive brain thermomonitoring. J. Anesthesiology and Intensive Care. 2015. V. 60. № 1. P. 66–69.
  6. Siores E. et al. First in vivo application of microwave radiometry in human carotids. J. of the Amer. Col. of Cardiology. 2012. V. 59. № 18. P. 1645–1653.
  7. Zampeli E. et al. Detection of subclinical synovial inflammation by microwave radiometry. PLoS ONE.2013. V. 8(5). PP. 1–6.
  8. Hashukoeva A.Z., Comaeva E.A., Vodyanik N.D. Primenenie transabdominal'noj i vaginal'noj radiotermometrii v kompleksnoj diagnostike vospalitel'nyh zabolevanij pridatkov matki. Lechenie i profilaktika. 2012. № 1. S. 26–30 (in Russian).
  9. Avdoshin V.P. i dr. Radiotermometriya v diagnostike ostrogo pielonefrita. Vestnik RUDN. Seriya: Medicina. 2002. № 2. S. 67–69 (in Russian).
  10. Zamechnik T.V. i dr. Matematicheskaya model' verifikacii rannih recidivov varikoznoj bolezni po dannym radiotermometrii. Vestnik novyh medicinskih tekhnologij. 2013. T. 20. № 2. S. 14–18 (in Russian).
  11. Gautherie M. Temperature and blood flow patterns in breast cancer during natural evolution and following radiotherapy. Prog. Clin. Biol. Res. 1982. № 107. P. 21–64.
  12. Kaprin A.D. i dr. Mikrovolnovaya radiotermometriya v diagnostike nekotoryh urologicheskih zabolevanij. Medicinskaya tekhnika. 2019. № 2. S. 8–11 (in Russian).
  13. Sostoyanie onkologicheskoj pomoshchi naseleniyu Rossii v 2021 godu. Pod red. A.D. Kaprina, V.V. Starinskogo. M.: MNIOI im. P.A. Gercena − filial FGBU «NMIC radiologii» Minzdrava Rossii. 2022. 239 s. (in Russian).
  14. Marechek S.V. Izmerenie temperaturnyh i dielektricheskih sred v SVCh-diapazone s pomoshch'yu antenn-applikatorov: Dis. … kand.fiz.-mat. nauk. M. 2002. 147 s. (in Russian).
  15. Sedankin M.K. Antenny-applikatory dlya radiotermometricheskogo issledovaniya teplovyh polej vnutrennih tkanej biologicheskogo ob"ekta: Dis. … kand. tekhn. nauk. M., 2013. 247 s. (in Russian).
  16. Bardati F., Iudicello S. Modeling the visibility of breast malignancy by a microwave radiometer. IEEE Trans. Biomed. Engineering. 2008. V.55. P. 214–221.
  17. Das K., Mishra S.C. Simultaneous estimation of size, radial and angular locations of a malignant tumor in a 3-D human breast–A numerical study. Journal of thermal biology. 2015. V. 52. P. 147–156.
  18. Sedankin M. K., Leushin V.Yu. et al. Mathematical simulation of heat transfer processes in a breast with a malignant tumor. Biomedical Engineering. 2018. V. 52. P. 190–194.
  19. Tepper M., Gannot I. Monitoring tumor state from thermal images in animal and human models. Medical physics. 2015. V. 42. № 3. P. 1297–1306.
  20. Ng E.Y.K., Sudharsan N.M. An improved three-dimensional direct numerical modelling and thermal analysis of a female breast with tumour. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine. 2001. V. 215. № 1. P. 25–37.
  21. Gonzalez F.J. Thermal Simulation of Breast Tumors. Revista Mexicana de Fisica. 2007. V.53 (4). R. 323–326.
  22. Iudicello S. Microwave radiometry for breast cancer detection: PhD thesis. Universita’ deglistudi tor vergata Roma, dipartimento di informatica, sistemi e produzione geoinformation research doctorate. Rome. 2009. 111 p.
  23. Said Camilleri J. et al. Review of thermal and physiological properties of human breast tissue. Sensors. 2022. V. 22. № 10. 3894.
  24. Polyakov M.V., Hoperskov A.V. Matematicheskoe modelirovanie prostranstvennogo raspredeleniya radiacionnogo polya v biotkani: opredelenie yarkostnoj temperatury dlya diagnostiki. Matematicheskaya fizika i komp'yuternoe modelirovanie. 2016. № 5 (36). S. 73–84 (in Russian).
  25. Hoperskov A.V. i dr. Vliyanie osobennostej melkomasshtabnoj struktury molochnoj zhelezy na raspredelenie glubinnoj temperatury pri ispol'zovanii radiotermometricheskoj diagnostiki. Matematicheskaya fizika i komp'yuternoe modelirovanie. 2014. № 6. S. 60–68 (in Russian).
  26. Losev A.G. i dr. Problemy izmereniya i modelirovaniya teplovyh i radiacionnyh polej v biotkanyah: analiz dannyh mikrovolnovoj termometrii. Matematicheskaya fizika i komp'yuternoe modelirovanie. 2015. № 6. S. 31–71 (in Russian).
  27. Polyakov M.V., Hoperskov A.V. Vychislitel'nye eksperimenty dlya issledovaniya radiacionnyh i teplovyh polej v biotkani. Inzhenernyj vestnik Dona. 2017. T. 45. № 2 (45). S. 81 (in Russian).
  28. Polyakov M.V., Khoperskov A.V., Zamechnic T.V. Numerical modeling of the internal temperature in the mammary gland. Health Information Science: 6th International Conference, HIS 2017, Moscow, Russia, October 7–9, 2017. Proceedings 6. Springer International Publishing. 2017. P. 128–135.
  29. Polyakov M., Levshinskii V., Khoperskov A. Modeling of brightness temperature in biological tissue. Journal of Physics: Conference Series. IOP Publishing. 2019. V. 1368. № 4. P. 042057.
  30. Novochadov V.V. et al. Comparative modeling the thermal transfer in tissues with volume pathological focuses and tissue engineering constructs: a pilot study. European Journal of Molecular Biotechnology. 2016. V. 14. № 4. P. 125–138.
  31. Hasgall P. et al. IT’IS Database for thermal and electromagnetic parameters of biological tissues (Ver. 4.1); Elsevier: Boston, FL. USA, 2022.
  32. Kabiri A., Talaee M.R. Theoretical investigation of thermal wave model of microwave ablation applied in prostate cancer therapy. Heat and Mass Transfer. 2019. V. 55. № 8. P. 2199–2208.
  33. Zhang J. et al. Numerical simulation for heat transfer in prostate cancer cryosurgery. Journal of Biomechanical Engineering. 2005. V. 127. № 2. P. 279–294.
  34. Kouloulias V. et al. Documentation of a new intracavitary applicator for transrectal hyperthermia designed for prostate cancer cases: A phantom study. Journal Medical Physics. 2018. V. 43. P. 141–145.
  35. El-Gohary S.H. et al. Design study on photoacoustic probe to detect prostate cancer using 3D Monte Carlo simulation and finite element method. Biomedical Engineering Letters. 2014. V. 4. № 3. P. 250–257.
  36. Kogan M. I., Krasulin V.V., Gluhov V.P. i dr. Vizualizaciya obstrukcij mocheispuskatel'nogo kanala u muzhchin: Ucheb. posobie. FGBOU VO RostGMU Minzdrava Rossii, FPK i PPS, kafedra urologii i reproduktivnogo zdorov'ya cheloveka s kursom detskoj urologii-andrologii, kafedra luchevoj diagnostiki. Rostov n/D: Izd-vo RostGMU. 2017. 96 s. (in Russian)
  37. Nazarenko G.I., Hitrova A.N. Ul'trazvukovaya diagnostika predstatel'noj zhelezy v sovremennoj urologicheskoj praktike. M.: Izdatel'skij dom Vidar-M. 2012. 288 s. (in Russian)
  38. Nelin I.V. i dr. Matematicheskoe modelirovanie teplovogo polya predstatel'noj zhelezy. Nauchno-tekhnicheskij vestnik Povolzh'ya. 2018. № 8. S. 44–48 (in Russian).
  39. Nelin I.V. i dr. Matematicheskoe modelirovanie radioteplovogo izlucheniya organov malogo taza. Nauchno-tekhnicheskij vestnik Povolzh'ya. 2018. № 10. S. 148–151 (in Russian).
  40. Sedankin M.K., Leushin V.Yu. i dr. Vnutripolostnaya antenna dlya mnogokanal'nogo radiotermografa. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2021. № 2. S. 54–62 (in Russian).
  41. Sedankin M.K., Leushin V.Yu. et al. Intracavity thermometry in medicine. Biomedical Engineering. 2021. V. 55. № 3. P. 224–229.
  42. Sedankin M.K., Leushin V.Yu. et al. Conformal antenna array for gynecology for medical microwave radiothermograph. 2022 International Conference on Actual Problems of Electron Devices Engineering (APEDE). IEEE. 2022. V. 1. P. 91–95.
  43. Sedankin M.K., Leushin V.Yu. et al. Radiometry of the pelvic organs. Biomedical Engineering. 2019. V. 53. P. 288–292.
  44. Leushin V.Yu., Gudkov A.G., Sidorov I.A., Korolev A.V., Rykov S.G., Chizhikov S.V., Agasieva S.V., Porohov I.O. Principy postroeniya i puti dal'nejshego sovershenstvovaniya mnogokanal'nyh mnogochastotnyh radiotermografov. Medicinskaya tekhnika. 2022. № 6 (336). S. 53–55 (in Russian).
  45. Leushin V.Yu., Sidorov I.A., Porohov I.O., Chizhikov S.V., Agasieva S.V., Agandeev R.V. Mnogokanal'nyj medicinskij 3D-radiotermograf. Biomedicinskaya radioelektronika 2022. T. 25. № 6. S. 60–66 (in Russian).
Date of receipt: 06.02.2023
Approved after review: 20.02.2023
Accepted for publication: 24.04.2023