350 rub
Journal Nanotechnology : the development , application - XXI Century №1 for 2023 г.
Article in number:
Simulation of nanoelectronic device structures based on 2D materials
Type of article: overview article
DOI: https://doi.org/10.18127/j22250980-202301-05
UDC: 621.382
Authors:

I.I. Abramov1, N.V. Kalameitsava2, V.A. Labunov3, I.A. Romanova4, I.Yu. Shcherbakova5

1–5 Belarusian State University of Informatics and Radioelectronics (Minsk, Belarus)
 

Abstract:

A review of studies on the simulation of nanoelectronics device structures based on 2D materials carried out at BSUIR is given. The proposed review is a continuation and supplement of our previous reviews devoted to the simulation of resonant tunneling device structures based on carbon nanomaterials and graphene, as well as field-effect transistors (FETs) based on single-layer graphene, published earlier [1–3].

In particular, models of FETs based on bilayer graphene and heterostructures based on 2D materials with vertical and horizontal transport are described. The proposed models make it possible to calculate the electrical characteristics of the structures under study, taking into account environmental conditions, structures, and applied bias. Studies on the calculation of the electrostatic potential in the channel of a double-gate graphene field-effect transistor have been carried out, the quantum capacitance values have been calculated depending on the band gap energy in bilayer graphene when a vertical bias is applied to the transistor gates, as well as the current-voltage characteristics (IV-characteristics) of the device.

The model of resonant tunneling structures has been modified according to the possibility of heterostructures containing 2D materials with vertical transport simulation. Several structures based on graphene/hBN, SiO2/MoS2 material systems have been simulated. The influence of various parameters on the IV-characteristics of the studied device structures is shown.

Pages: 54-68
For citation

Abramov I.I., Kalameitsava N.V., Labunov V.A., Romanova I.A., Shcherbakova I.Yu. Simulation of nanoelectronic device structures based on 2D materials. Nanotechnology: development and applications – XXI century. 2023. V. 15. № 1. P. 54–68. DOI: https://doi.org/10.18127/ j22250980-202301-05 (in Russian)

References
  1. Abramov I. I., Kolomejceva N. V., Labunov V. A., Romanova I. A. Modelirovanie rezonansno-tunnel'nyh pribornyh struktur na osnove uglerodnyh nanomaterialov. Nanotekhnologii, razrabotka, primenenie – XXI vek. 2017. T. 9. № 3. C. 3–11 (in Russian).
  2. Abramov I.I., Kolomejceva N.V., Labunov V.A., Romanova I.A., Shcherbakova I.Yu. Modelirovanie polevyh grafenovyh tranzistorov s odnim i dvumya zatvorami v razlichnyh rezhimah funkcionirovaniya. Nanotekhnologii, razrabotka, primenenie – XXI vek. 2018. № 3. C. 16–24 (in Russian).
  3. Abramov I.I., Kolomejceva N.V., Labunov V.A., Romanova I.A. Modelirovanie rezonansno-tunnel'nyh pribornyh struktur na osnove uglerodnyh nanomaterialov. Nanotekhnologii, razrabotka, primenenie – XXI vek. 2022. T. 14. № 2. C. 61–68 (in Russian).
  4. Lemme M.C., Echtermeyer T.J., Baus M., Kurz H. A graphene field-effect device. IEEE Electron Device Letters. 2007. V. 28. № 4.
    P. 282–284.
  5. Tian J. Theory modeling and implementation of graphene field-effect transistor. Ph.D. dissertation, School of Electronic Engineering and Computer Science, Queen Mary University of London, London, United Kingdom. 2017. 52 p.
  6. He Z., Yu C., Liu Q., Song X., Gao X., Guo J., Zhou C., Cai S., Feng Z. High temperature RF performances of epitaxial bilayer graphene field-effect transistors on SiC substrate. Carbon. 2020. V. 164. № 30. P. 435–441.
  7. Pandey H., Aguirre-Morales J.-D., Kataria S., Fregonese S., Passi V., Iannazzo M., Zimmer T., Alarcon E., Lemme M. C. Enhanced intrinsic voltage gain in artificially stacked bilayer CVD graphene field effect transistors. Ann. Phys. (Berlin). 2017. V. 529. № 11. P. 1700106-1–9.
  8. Cheli M., Fiori G., Iannaccone G. A semiclassical model of bilayer graphene field-effect transistor. IEEE Trans. on elect. Dev. 2009. V. 56. № 12. P. 2927–2986.
  9. Ryzhii V., Ryzhii M., Satou A., Otsuji T., Kirova N. Device model for graphene bilayer field-effect transistor. J. Appl. Phys. 2009. V. 105. P. 104510-1–9.
  10. Aguirre-Morales D. Characterization and modeling of graphene-based transistors towards high frequency circuit applications. Thesis. University of Bordeaux. 2016. Chapter 2. Bilayer GFET compact model. P. 77–100.
  11. Abramov I.I., Kolomejceva N.V., Labunov V.A., Romanova I.A., ShCherbakova I.Yu. Vliyanie dielektrikov zatvorov polevyh grafenovyh tranzistorov na vol't-ampernye harakteristiki. Mikroelektronika. 2021. T. 50. № 2. C. 127–134 (in Russian).
  12. Abramov I.I., Kolomejceva N.V., Labunov V.A., Romanova I.A. Modelirovanie polevyh grafenovyh tranzistorov s odnim i dvumya zatvorami. Nano- i mikrosistemnaya tekhnika. 2017. T. 19. № 12. P. 714–721 (in Russian).
  13. Zhu W., Perebeinos V., Freitag M., Avouris P. Carrier scattering, mobilities and electrostatic potential in mono-, bi- and tri-layer graphenes. Phys. Rev. B. 2009. V. 80. P. 35402.
  14. High-Frequency GaN Electronic Devices. Edited by P. Fay, D. Jena, P. Maki. Springer. 2019. 309 p.
  15. Singh M.M., Siddiqui M.J., Saxena A. Comparative simulation of GaAs and GaN based double barriers-resonant tunneling diode. Procedia Computer Science. 2016. V. 85. P. 581–587.
  16. Abramov I.I., Labunov V.A., Kolomejtseva N.V., Romanova I.A., Shcherbakova I.Yu. Simulation of graphene field-effect transistors and resonant tunneling diodes based on carbon nanomaterials. Proc. SPIE. 2019. V. 11022. P. 110220F-1–11.
  17. Abramov I.I., Labunov V.A., Kalameitsava N.V., Romanova I.A., Shcherbakova I.Yu. Qantum drift-diffusion models for dual-gate field-effect transistors based on mono- and bilayer graphene. Proc. of SPIE. 2022. V. 12157. P. 121570X-1–6.
  18. Abramov I.I. Osnovy modelirovaniya elementov mikro- i nanoelektroniki. Saarbrücken: LAP LAMBERT Academic Publishing. 2016. 444 c. (in Russian).
  19. Abramov I.I. Lekcii po modelirovaniyu elementov integral'nyh skhem. M. – Izhevsk: NIC RHD. 2005. 152 s. (in Russian).
  20. Abramov I.I. Lekcii po modelirovaniyu elementov integral'nyh skhem mikroelektroniki. Uchebnoe posobie. Saarbrücken: LAP LAMBERT Academic Publishing. 2012. 116 c. (in Russian).
  21. Zhang Y., Tang T.-T., Girit C., Hao Z., Martin M. C., Zettl A., Crommie M.F., Shen Y. R., Wang F. Direct observation of a widely tunable bandgap in bilayer graphene. Nature. 2009. V. 459. № 7248. P. 820–823.
  22. Abramov I.I., Kolomejceva N.V., Labunov V.A., Romanova I.A., Shcherbakova I.Yu. Metod rascheta kvantovoj emkosti v modeli polevyh tranzistorov na dvuhslojnom grafene. SVCh-tekhnika i telekommunikacionnye tekhnologii: KryMiKo2022. Vyp. 4: Sb. nauch. tr. 32-j Mezhdunar. nauch.-tekhn. konf., Sevastopol', 11–17 sentyabrya 2022. Sevastopol'skij gos. universitet. S. 175–176 (in Russian).
  23. Abramov I.I. Problemy i principy fiziki i modelirovaniya pribornyh struktur mikro- i nanoelektroniki. Chast' I. Osnovnye polozheniya. Nano-i mikrosistemnaya tekhnika. 2006. № 8. S. 34–37 (in Russian).
  24. Abramov I.I., Goncharenko I.A. Chislennaya kombinirovannaya model' rezonansno-tunnel'nogo dioda. Elektromagnitnye volny i elektronnye sistemy. 2002. T. 7. № 3. C. 54–60 (in Russian).
  25. Abramov I.I., Goncharenko I.A., Kolomejceva N.V. Kombinirovannaya model' rezonansno-tunnel'nogo dioda. Fizika i tekhnika poluprovodnikov. 2005. T. 39. № 6. S. 1138–1145 (in Russian).
  26. Abramov I.I., Goncharenko I.A., Kolomejceva N.V. Kombinirovannaya dvuhzonnaya model' rezonansno-tunnel'nogo dioda. Fizika i tekhnika poluprovodnikov. 2007. T. 41. № 11. S. 1395–1400 (in Russian).
  27. Szafranek B.N., Fiori G., Schall D., Neumaier D., Kurz H. Current saturation and voltage gain in bilayer graphene field effect transisrors. Nano Lett. 2012. V. 12. № 3. P. 1324–1328.
  28. Xia F., Farmer D. B., Lin Y.-M., Avouris P. Graphene field-effect transistors with high on/off current ratio and large transport band gap at room temperature. NanoLett. 2010. V. 10. P. 715–718.
  29. Kanayama K., Nagashio K. Gap state analysis in electric-field-induced band gap for bilayer grapheme. Scientific reports. 2015. V. 5. P.15789-1–9.
  30. Pandey H., Kataria S., Passi V., Iannazzo M., Alarcon E., Lemme M.C. Improved voltage gain in mechanically stacked bilayer graphene field effect transistors. Eurosoi-ULIS. 2016. P. 143–146.
  31. Feijoo P.C., Pasadas F., Bonmann M., Otto M., Newmaier D., Stake J., Jimenez D. Does carrier velocity saturation help to enhance fmax in graphene field-effect transistors? Nanoscale Adv. 2020. V. 2. P. 4179–4186.
  32. Abramov I.I., Labunov V.A., Kalameitsava N.V., Romanova I.A., Shcherbakova I.Yu. Simulation of various nanoelectronic devices based on 2D materials. Proc. of SPIE. 2022. V. 12157. P. 121570U-1–9.
  33. Abramov I.I., Kolomejceva N.V., Labunov V.A., Romanova I.A., Shcherbakova I.Yu. Chislennoe modelirovanie trekhbar'ernyh rezonansno-tunnel'nyh diodov na osnove grafena. Ural Radio Engineering Journal. 2019. T. 3. № 4. C. 343–355 (in Russian).
  34. Abramov I.I., Labunov V.A., Kolomejceva N.V., Romanova I.A., ShCherbakova I.Yu. Teoreticheskoe issledovanie polevyh tranzistorov i rezonansno-tunnel'nyh diodov na osnove grafena. Materialy VIII Mezhdunarodnoj nauchnoj konferencii «Materialy i struktury sovremennoj elektroniki», Minsk, 10–12 oktyabrya 2018. S. 219–222 (in Russian).
  35. Abramov I.I., Kolomejceva N.V., Labunov V.A., Romanova I.A., Shcherbakova I.Yu. Chislennoe modelirovanie trekhbar'ernyh rezonansno-tunnel'nyh diodov na osnove grafena. SVCh-tekhnika i telekommunikacionnye tekhnologii: KryMiKo2019. Vyp. 1: Sb. nauch. tr. 29-j Mezhdunar. nauch.-tekhn. konf., Sevastopol', 8–14 sentyabrya 2019. Sevastopol': Sevastopol'skij gos. un-t. S. 328 (in Russian).
  36. Abramov I.I., Kolomejceva N.V., Labunov V.A., Romanova I.A., Shcherbakova I.Yu. Chislennoe modelirovanie rezonansno-tunnel'nyh diodov na osnove dvumernyh materialov. SVCh-tekhnika i telekommunikacionnye tekhnologii: KryMiKo2020. Vyp. 2: Sb. nauch. tr. 30-j Mezhdunar. nauch.-tekhn. konf., Sevastopol', 6–12 sentyabrya 2020. Sevastopol': Sevastopol'skij gos. un-t. S. 281 (in Russian).
  37. Abramov I.I., Labunov V.A., Kolomejceva N.V., Romanova I.A., Shcherbakova I.Yu. Modelirovanie pribornyh struktur na grafene s primeneniem sistemy NANODEV. Materialy i struktury sovremennoj elektroniki: materialy IX Mezhdunar. nauch. konf., Minsk, Belarus', 14–16 oktyabrya, 2020. S. 256–260 (in Russian).
  38. Abramov I.I., Kolomejceva N.V., Labunov V.A., Romanova I.A., Shcherbakova I.Yu. Chislennaya model' geterostruktur s vertikal'nym transportom na osnove dvumernyh materialov. SVCh-tekhnika i telekommunikacionnye tekhnologii: KryMiKo2021. Vyp. 3: Sb. nauch. tr. 31-j Mezhdunar. nauch.-tekhn. konf., Sevastopol', 5–11 sentyabrya 2021. Sevastopol': Sevastopol'skij gos. un-t. S. 263 (in Russian).
  39. Abramov I.I., Kolomejceva N.V., Labunov V.A., Romanova I.A., Shcherbakova I.Yu. Modelirovanie rezonansno-tunnel'nyh diodov na osnove GaN/AlGaN c vertikal'nym transportom. SVCh-tekhnika i telekommunikacionnye tekhnologii: KryMiKo2021. Vyp. 3: Sb. nauch. tr. 31-j Mezhdunar. nauch.-tekhn. konf., Sevastopol', 5–11 sentyabrya 2021. Sevastopol': Sevastopol'skij gos. un-t, S. 264 (in Russian).
  40. Larentis S., Tolsma J. R., Fallahazad B., Dillen D. C., Kim K., MacDonald A. H., Tutuc E. Band offset and negative compressibility in Graphene-MoS2 heterostructures. Nanoletters. 2014. V. 14. P. 2039–2045.
  41. Laturia A., Van de Put M. L., Vandenberghe W. G. Deilectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. Nature. 2D Materials and Applications. 2018. V. 4. № 28. P. 1–6.
  42. Abramov I.I., Kolomejceva N.V., Labunov V.A., Romanova I.A., Shcherbakova I.Yu. Modelirovanie vertikal'nyh geterostruktur na osnove 2D materialov. SVCh-tekhnika i telekommunikacionnye tekhnologii: KryMiKo2022. Vyp. 4: Sb. nauch. tr. 32-j Mezhdunar. nauch.-tekhn. konf., Sevastopol', 11–17 sentyabrya 2022. Sevastopol': Sevastopol'skij gos. un-t, S. 169 (in Russian).
  43. Abramov I.I., Kolomejceva N.V., Labunov V.A., Romanova I.A., Shcherbakova I.Yu. Modelirovanie harakteristik RTD na osnove GaN/AlGaN c vertikal'nym transportom. SVCh-tekhnika i telekommunikacionnye tekhnologii: KryMiKo2022. Vyp. 4: Sb. nauch. tr. 32-j Mezhdunar. nauch.-tekhn. konf., Sevastopol', 11–17 sentyabrya 2022. Sevastopol': Sevastopol'skij gos. un-t. S. 177 (in Russian).
  44. Abramov I.I., Goncharenko I.A., Ignatenko S.A., Korolev A.V., Novik E.G., Rogachev A.I. Sistema modelirovaniya nanoelektronnyh priborov – NANODEV. Mikroelektronika. 2003. T. 32. № 2. S. 124–133 (in Russian).
  45. Abramov I.I., Baranoff A.L., Goncharenko I.A., Kolomejtseva N.V., Bely Y.L., Shcherbakova I.Y. A nanoelectronic device simulation software system NANODEV: New opportunities. Proc. of SPIE. 2010. V. 7521. P. 75211E1-1–11.
Date of receipt: 01.02.2023
Approved after review: 14.02.2023
Accepted for publication: 20.02.2023