350 rub
Journal Nanotechnology : the development , application - XXI Century №1 for 2023 г.
Article in number:
The field experiments results on remote determination of soil moisture portraits (part 2)
Type of article: scientific article
DOI: https://doi.org/10.18127/j22250980-202301-04
UDC: 681.7.069.32
Authors:

I.A. Sidorov1, A.G. Gudkov2, E.P.Novichickin3, N.F. Khokhlov4, A.G. Bolotov5, S.V.Chizhikov6, V.E. Pchelintsev7, V.S. Sinavchian8

1–8 Bauman Moscow State Technical University (Moscow, Russia)
 2 LLC Research and Production Innovation Firm HYPERION (Moscow, Russia)
 3 V. A. Kotelnikov Institute of Radio Engineering and Electronics, Russian Academy of Sciences (Moscow, Russia)
 4, 5 K.A. Timiryazev Moscow Agricultural Academy
 

Abstract:

The introduction of precision farming technologies into the practice of agricultural production is an urgent task, the solution this task would ensure the sustainable development of crop production, cost reduction and saving of water resources. Continuous monitoring of the main physico-chemical parameters that determine the yield of crops – the amount of heat, light and moisture received by plants, as well as monitoring of the biochemical composition of the soil that determines fertility is necessary. The existing standard methods for determining soil moisture are too long, expensive and insufficiently prompt. A promising method of solving this problem is the method of passive remote sensing of the Earth's surface using microwave radiometers.

The purpose of the work is to demonstrate the results of field experiments on remote determination of soil moisture portraits made in various climatic zones using a new bipolarization microwave radiometer from a UAV and ground–based mobile platforms.

Field experiments on remote determination of portraits of humidity and temperature of the soil surface in the Krasnodar Territory, the Moscow region and the Republic of Crimea were carried out. Maps of portraits of soil moisture and temperature of the soil surface were obtained. Electromagnetic compatibility of the microwave radiometer with mobile carrier systems has been verified. Data have been prepared for entering into the database of radiometric measurements of soils.

The work carried out will permit to clarify some parameters of the microwave radiometric system. The accumulation of a database of radiometric measurements will allow the use of artificial intelligence technologies in the future to refine the brightness-humidity conversion algorithms and the introduction of the developed equipment and algorithms into the technological processes of growing crops ensures the sustainable development of crop production technologies, increasing yields and obtaining additional profit by the agro-industrial complex.

Pages: 41-53
For citation

Sidorov I.A., Gudkov A.G., Novichickin E.P., Khokhlov N.F., Bolotov A.G., Chizhikov S.V., Pchelintsev V.E., Sinavchian V.S. The field experiments results on remote determination of soil moisture portraits (part 2). Nanotechnology: development and applications – XXI century. 2023. V. 15. № 1. P. 41–53. DOI: https://doi.org/10.18127/j22250980-202301-04 (in Russian)

References
  1. Sidorov I.A., Gudkov A.G., Novichihin E.P., Leushin V.Yu., Hohlov N.F., Bolotov A.G., Chizhikov S.V. Rezul'taty naturnyh eksperimentov po distancionnomu opredeleniYu portretov vlazhnosti pochvy (chast' 1). Nanotekhnologii: razrabotka, primenenie – XXI vek». 2022
    № 4. S. 45–60. DOI: https://doi.org/10.18127/j22250980-202204-05 (in Russian).
  2. Sidorov I.A., Novichihin E.P., Gudkov A.G., Chizhikov S.V., Bolotov A.G., Hohlov N.F., Porohov I.O. Modelirovanie processa priema sobstvennogo radioteplovogo izlucheniya zemnoj poverhnosti. RENSIT: Radioelektronika. Nanosistemy. Informacionnye tekhnologii. 2022. № 14(4). S. 359–372. DOI: 10.17725/rensit.2022.14.359 (in Russian).
  3. Gulyaev Yu.V., Shutko A.M., Sidorov I.A. i dr. SVCh-radiometriya zemnoj i vodnoj poverhnostej: ot teorii k praktike. Sofiya: Akademicheskoe izdatel'stvo imeni prof. Marina Drinova. 2014 (in Russian).
  4. Sidorov I.A. Rezul'taty issledovaniya ustojchivosti i odnoznachnosti resheniya uravnenij Frenelya v zadachah radiometricheskogo zondirovaniya zemnoj poverhnosti. SVCh-tekhnika i telekommunikacionnye tekhnologii. 2021. № 3. S. 452–453 (in Russian).
  5. Gudkov A.G., Agasieva S.V., Sidorov I.A., Khokhlov N.F., Chernikov A.S., Vagapov Y. A portable microwave radiometer for proximal measurement of soil permittivity. Computers and Electronics in Agriculture. July 2022. V. 198. DOI:10.1016/j.compag.2022.107076
  6. Svidetel'stvo o gosudarstvennoj registracii programmy dlya EVM №2022613925. Programma obrabotki dannyh distancionnogo vlagomera i postroeniya kart. I.A. Sidorov, S.V. Asieva, E.N. Gorlacheva, E.P. Novichihin, A.G. Gudkov. 2022 (in Russian).
  7. Parrens M., Wigneron J.-P., Richaume P., Mialon A., Al Bitar A., Fernandez-Moran R., Al-Yaari A., Kerr Y.H. Global-scale surface roughness effects at L-band as estimated from SMOS observations. Remote Sensing of Environment. 2016. V. 181. P. 122–136. URL: https://doi.org/10.1016/j.rse.2016.04.006.dfd
  8. Jackson T.J., Schmugge T.J. Vegetation effects on the microwave emission of soils. Remote Sensing of Environment. 1991. V. 36.
    Is. 3. P. 203–212. URL: https://doi.org/10.1016/0034-4257(91)90057-D
  9. Sidorov I.A. Metody opredeleniya vlazhnosti pochvy dlya sistemy tochnogo zemledeliya. Nanotekhnologii: razrabotka, primenenie. 2018. T. 10. № 4. S. 44–50. DOI:10.18127/j22250980-201804-06 (in Russian).
  10. Hohlov N.F., Bolotov A.G., Sidorov I.A., Gudkov A.G., Novichihin E.P., Chizhikov S.V. Evristicheskij i prikladnoj potencial sovmeshcheniya mikrovolnovogo vlazhnostno-temperaturnogo zondirovaniya pochvy i fotos"emki v facial'no-differencirovannyh agrogeosistemah. Zhurnal radioelektroniki. 2022. № 11. DOI: https://doi.org/10.30898/1684-1719.2022.11.18 (in Russian).
  11. Bolotov A.G., Shein E.V., Sidorov I.A. Metod opredeleniya vlazhnosti pochvy v sisteme adaptivnogo-landshaftnogo zemledeliya. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2021. T. 13. № 4. S. 10–14 (in Russian).
  12. «Federal'nyj nauchnyj centr risa»: [Elektronnyj resurs]. URL: https://vniirice.ru. (Data obrashcheniya: 22.02.2023) (in Russian).
  13. Sidorov I.A., Gudkov A.G., Oblivancov V.V., Ermolov P.P., Novichihin E.P., Leushin V.Yu., Agandeev R.V. Radiometricheskoe distancionnoe opredelenie portretov vlazhnosti pochvy na vinogradnike v Krymu. Elektromagnitnye volny i elektronnye sistemy. 2022. T. 27. № 5. S. 65−70. DOI: https://doi.org/10.18127/j15604128-202205-09 (in Russian).
  14. Shutko A., Coleman T., Haldin A., Sidorov I., Novichikhin E.et al. Rover and robotic aerial platforms for microwave radiometric remote sensing: The IRE-Vega-AAMU joint collaboration, Novosibirsk, Russia. 2005. URL: https://www.researchgate.net/publication/ 229021937_Joint_USA-Russia_Field_Experiment_in_Alabama_on_Microwave_Radiometry_ of_Soil-Vegetation_System
  15. Archer F., Shutko A., Coleman T., Sidorov I., Novichikhin E., Haldin A., Thompson W.L. II. Microwave radiometric measurements of soil moisture at L-band and C-band using a rover and unmanned aerial system. In Press: Accepted for pub-lication in IEEE Geoscience and Remote Sensing Letters. 2006. 5 p.
  16. Viscarra Rossel R.A., Walvoort D.J.J., McBratney A.B., Janik L.J., Skjemstad J.O. Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma 2006. V. 131. Is. 1–2. P. 59–75. ISSN 0016-7061, URL: https://doi.org/10.1016/j.geoderma. 2005.03.007
Date of receipt: 06.02.2023
Approved after review: 13.02.2023
Accepted for publication: 20.02.2023