350 rub
Journal Nanotechnology : the development , application - XXI Century №1 for 2023 г.
Article in number:
Intelligent analysis of microwave radiothermometry data in medical diagnostics
Type of article: overview article
DOI: https://doi.org/10.18127/j22250980-202301-01
UDC: 519.68
Authors:

A.G. Losev1, I.E. Popov2, A.G. Gudkov3, S.V. Chizhikov4

1,2 Volgograd State University (Volgograd, Russia)
3 4 Bauman Moscow State Technical University (Moscow, Russia)
3 LLC Research and Production Innovation Firm HYPERION (Moscow, Russia)
 

Abstract:

This paper describes and substantiates the prospects for the use of artificial intelligence in medical diagnostics based on the method of microwave radiothermometry. In particular, an original method for the development of hybrid intelligent decision support systems in the diagnosis of breast cancer based on mathematical modeling and intellectual analysis of thermometric data is proposed.

This method of medical diagnostics is based on the measurement of the intrinsic electromagnetic radiation of human tissues in the microwave and infrared ranges, which makes it possible to non-invasively detect temperature anomalies at a depth of several centimeters. It is assumed that such a system should include a classification model and a classifier interpretation model, according to which the justification of the results is built in a language understandable to a specialist. A method for developing diagnostic and conceptual-diagnostic models is proposed, which consists in the phased creation and subsequent refinement of the corresponding models. The process begins with the creation of a conceptual model that describes the temperature anomalies characteristic of each of the diagnostic classes. Then a mathematical model is built that quantitatively describes each of the anomalies. A diagnostic model is built on the basis of the mathematical model. This model is based on a classification algorithm, the input of which is a feature space, which includes elements of a mathematical model. The final one is the conceptual-diagnostic model, which, on the basis of the diagnostic model, builds a rationale for the supplied diagnostic solution. The paper provides examples of each of these models used in breast cancer examinations using microwave radiothermometry. It also describes the diagnostic classes used in examinations, as well as the temperature anomalies characteristic of each of them. A mathematical model is presented and the principles of its construction are described. The results of computational experiments on the constructed diagnostic models are described, showing their effectiveness. Examples of consultative-diagnostic models based on various classification algorithms are given. The proposed methods for constructing intelligent systems can be applied both in conducting examinations of other organs using microwave radiothermometry, and adapted to various other areas of application that use classification algorithms that are subject to justification.

The method of microwave radiothermometry has been used in medical centers in Russia and the world over the past 25 years and has already shown quite good efficiency. The paper shows that one of the main prospects for the development of this diagnostic method is the use of artificial intelligence algorithms and the development of appropriate intelligent systems.

The research was carried out with the financial support of the Russian science Foundation in the framework of agreement No. 19-19-00349-П in the theme: «A method and a multichannel multifrequency microwave radiothermography on the basis of monolithic integrated circuits for finding the 3D distribution and dynamics of brightness temperature in the depths of the human body».

Pages: 5-22
For citation

Losev A.G., Popov I.E., Gudkov A.G., Chizhikov S.V. Intelligent analysis of microwave radiothermometry data in medical diagnostics. Nanotechnology: development and applications – XXI century. 2023. V. 15. № 1. P. 5–22. DOI: https://doi.org/10.18127/ j22250980-202301-01 (in Russian)

References
  1. Vidyukov V.I., Mustafin Ch.K., Kerimov R.A., Fisher L.N. Differencial'naya diagnostika opuholej molochnyh zhelez na osnove dannyh radiotermometrii. Opuholi zhenskoj reproduktivnoj sistemy. 2016. T. 12. № 1. S. 26–31 (in Russian).
  2. Barrett A.H., Myers P.C. Subcutaneous temperatures: A method of noninvasive sensing. Science 1975. V. 190. P. 669–671.
  3. Barrett A.H., Myers P.C., Sadowsky N.L. Detection of breast cancer by microwave radiometry. Radio Sci. 1977. V. 12. P. 167–171.
  4. Troickij V.S., Gustov A.V., Belov I.F., Plechkov V.M., Gorbachev V.P., Siz'mina L.K. O vozmozhnosti ispol'zovaniya sobstvennogo teplovogo SVCh radioizlucheniya tela cheloveka dlya izmereniya temperatury ego vnutrennih organov: rezul'taty i perspektivy. Uspekhi fizicheskih nauk. 1981. T. 134. № 5. S. 155–158 (in Russian).
  5. Troickij V.S. K teorii kontaktnyh radiometricheskih izmerenij vnutrennej temperatury tel. Izv. vuzov.  Ser.: Radiofizika. 1981. T. 24.
    № 9. S. 1054 (in Russian).
  6. Godik E.E., Gulyaev Yu.V. Chelovek glazami radiofiziki. Radiotekhnika. 1991. № 8. S. 51–62 (in Russian).
  7. Gautherie M., Gros C.M. Breast Thermography and Cancer Risk Prediction. Cancer. 1980. V. 45. P. 51–56.
  8. Gautherie M. Temperature and Blood Flow Patterns in Breast Cancer During Natural Evolution and Following Radiotherapy. Biomedical Thermology. 1982. P. 21–64.
  9. Vesnin S.G., Sedankin M.K., Gudkov A.G., Leushin V.Y., Sidorov I.A., Porokhov I.O., Agasieva S.V., Vidyakin S.I. A Printed Antenna with an Infrared Temperature Sensor for a Medical Multichannel Microwave Radiometer. Biomedical Engineering. 2020. V. 54. № 4.
    P. 235–239.
  10. Vesnin S., Turnbull A., Dixon J., Goryanin I. Modern Microwave Thermometry for Breast Cancer. Journal of Molecular Imaging & Dynamics. 2017. V. 7. № 2.
  11. Burdina L.M., Vajsblat A.V., Vesnin S.G., Konkin M.A., Lashchenkov A.V., Naumkina N.G., Tihomirova N.N. Primenenie radiotermometrii dlya diagnostiki raka molochnoj zhelezy. Mammologiya. 1998. № 2. S. 3–12 (in Russian).
  12. Burdina L.M., Hajlenko V.A., Kizhaev E.V., Legkov A.A., Pinhosevich E.G., Mustafin Ch.K., Vajsblat A.V., Vesnin S.G., Tihomirova N.N. Primenenie radiotermometra diagnosticheskogo komp'yuterizirovannogo integral'noj glubinnoj temperatury tkani dlya diagnostiki raka molochnoj zhelezy: posobie dlya vrachej. M., 1999. 20 s. (in Russian).
  13. Vajsblat A.V. Radiotermografiya kak metod diagnostiki v medicine. M.: NCZD RAMN. 2003. 80 s. (in Russian).
  14. Vesnin S.G., Kaplan M.A., Avakyan R.S. Sovremennaya mikrovolnovaya radiotermometriya molochnyh zhelez. Opuholi zhenskoj reproduktivnoj sistemy. 2008. № 3 (in Russian).
  15. Tihomirova N.N. Mikrovolnovaya radiotermometriya. [Elektronnyj resurs]: tekhnika provedeniya RTM-obsledovaniya molochnyh zhelez. URL: http://www.radiometry.ru/radiometry/books/upload/536/tech_2008.pdf (in Russian).
  16. Komov D.V., Ozherel'ev A.S., Terent'ev I., Malygin A.A., Orinovskij M.B. Radiotermometriya v kompleksnoj diagnostike dobrokachestvennyh obrazovanij i raka molochnoj zhelezy. Vestnik RONC im. N. N. Blohina RAMN. 1992. T. 3. № 1. S. 31–33 (in Russian).
  17. Mustafin Ch. K. Radiotermometricheskie osnovy issledovaniya molochnyh zhelez. Medicinskaya vizualizaciya. 2006. № 3. S. 31–38 (in Russian).
  18. Rozhkova N.I., Smirnova N.A., Nazarov A.A. Faktory, vliyayushchie na effektivnost' radiotermometricheskih izmerenij molochnoj zhelezy s pomoshch'yu diagnosticheskogo kompleksa RTM-01-RES. Medicinskaya vizualizaciya. 2007. № 6. S. 118–123 (in Russian).
  19. Moloney B.M., McAnena P.F., Abd Elwahab S.M., Fasoula A., Duchesne L., Gil Cano J.D., Glynn C., O’Connell A., Ennis R., J. Lowery A., Kerin M.J. Microwave Imaging in Breast Cancer–Results from the First-In-Human Clinical Investigation of the Wavelia System. Acad. Radiol. 2022. V. 29. P. S211–S222.
  20. Stauffer P.R., Snow B.W., Rodrigues D.B., Salahi S., Oliveira T.R., Reudink D., Maccarini P. F. Non-invasive measurement of brain temperature with microwave radiometry: Demonstration in a head phantom and clinical case. Neuroradiol. J. 2014. V. 27. P. 3–12.
  21. Goryanin I., Karbainov S., Shevelev O., Tarakanov A., Redpath K., Vesnin S., Ivanov Y. Passive microwave radiometry in biomedical studies. Drug Discovery Today. 2020. V. 25. № 4. P. 757–763.
  22. Osmonov B., Ovchinnikov L., Galazis C., Emilov B., Karaibragimov M., Seitov M., Vesnin S., Losev A., Levshinskii V., Popov I., Mustafin C., Kasymbekov T., Goryanin I. Passive Microwave Radiometry for the Diagnosis of Coronavirus Disease 2019 Lung Complications in Kyrgyzstan. Diagnostics. 2021. Vol. 11. № 2.
  23. Sedankin M., Gudkov A., Leushin V., Vesnin S., Sidorov I., Chupina D., Agasieva S., Skuratov V., Chizhikov S. Microwave Radiometry of the Pelvic Organs. Biomedical Engineering. 2019. V. 53. № 4. P. 288–292.
  24. Tarakanov A.V., Tarakanov A.A., Vesnin S., Efremov V., Roberts N., Goryanin I. Influence of Ambient Temperature on Recording of Skin and Deep Tissue Temperature in Region of Lumbar Spine. European Journal of Molecular & Clinical Medicine. 2020. V. 7. № 1. P. 21–26.
  25. Adyrhaev A.A., Gusejnov A.Z., Mustafin Ch.K., Hapilina O.B. Rol' radiotermometrii v kompleksnoj diagnostike fibrozno-kistoznoj mastopatii. Vestnik novyh medicinskih tekhnologij. 2007. T. XIV. № 1. S. 145–146 (in Russian).
  26. Zamechnik T.V., Larin S.I., Loseva A.G. Kombinirovannaya radiotermometriya kak metod issledovaniya venoznogo krovoobrashcheniya nizhnih konechnostej. Volgograd: Volgogradskij gos. med. un-t, 2015. 252 s. (in Russian).
  27. Tarakanov A.V., Lebedenko A.A., Ladanova E.S., Tarakanova T.D. Perspektivy primeneniya mikrovolnovoj radiotermometrii kolennyh sustavov u detej pri yuvenil'nom idiopaticheskom artrite. Sovremennye problemy nauki i obrazovaniya. 2020. № 5 (in Russian).
  28. Hardikov A.V. Vozmozhnosti radiotermometrii v differencial'noj diagnostike tazovogo bolevogo sindroma i variantov hronicheskih sal'pingooforitov. Vestnik novyh medicinskih tekhnologij. 2009. T. XVI. № 2. S. 150–151 (in Russian).
  29. Kaprin A.D., Kostin A.A., Andryukhin M.I., Ivanenko K.V., Popov S.V., Shegai P.V., Kruglov D.P., Mangutov F.S., Leushin V.Y., Agasieva S.V. Microwave Radiometry in the Diagnosis of Various Urological Diseases. Biomed. Eng. 2019. V. 53. P. 87–91.
  30. Shevelev O., Petrova M., Smolensky A., Osmonov B., Toimatov S., Kharybina T., Karbainov S., Ovchinnikov L., Vesnin S., Tarakanov A., Goryanin I. Using medical microwave radiometry for brain temperature measurements. Drug Discov. Today 2022. V. 27. P. 881–889.
  31. Zaretsky D., Romanovsky A., Zaretskaia M., Molkov Y. Tissue oxidative metabolism can increase the difference between local temperature and arterial blood temperature. Temperature. 2018. V. 5. P. 22–35.
  32. Laskari K., Pentazos G., Pitsilka D., Raftakis J., Konstantonis G., Toutouzas K., Siores E., Tektonidou M., Sfikakis P.P. Joint microwave radiometry for inflammatory arthritis assessment. Rheumatology. 2020. V. 59. P. 839–844.
  33. Gulyaev Yu.V., Leushin V.Yu., Gudkov A.G., Shchukin S.I., Vesnin S.G., Kublanov V.S., Porohov I.O., Sedankin M.K., Sidorov I.A. Pribory dlya diagnostiki patologicheskih izmenenij v organizme cheloveka metodami mikrovolnovoj radiometrii. Nanotekhnologii: razrabotka, primenenie. 2017. T. 9. № 2. S. 27–45 (in Russian).
  34. Gavrilova T.A., Chervinskaya K.R. Izvlechenie i strukturirovanie znanij dlya ekspertnyh sistem M.: Radio i svyaz'. 1992. 200 s. (in Russian).
  35. Losev A. G., Hoperskov A.V., Astahov A.S., Sulejmanova H.M. Problemy izmereniya i modelirovaniya teplovyh i radiacionnyh polej v biotkanyah: analiz dannyh mikrovolnovoj termometrii. Vestnik Volgogradskogo gosudarstvennogo universiteta. Ser. 1: Matematika. Fizika. 2015. № 6 (31). S. 31–71 (in Russian).
  36. Polyakov M.V., Popov I.E., Losev A.G., Khoperskov A.V. Application of computer simulation results and machine learning in the analysis of microwave radiothermometry data. Mathematical Physics and Computer Simulation. 2021. V. 24, № 2. P. 27–37.
  37. Khoperskov A.V., Polyakov M.V. Improving the Efficiency of Oncological Diagnosis of the Breast Based on the Combined Use of Simulation Modeling and Artificial Intelligence Algorithms. Algorithms. 2022. V. 15. P. 292.
  38. Levshinskii V., Polyakov M., Losev A., Khoperskov A.V. Verification and Validation of Computer Models for Diagnosing Breast Cancer Based on Machine Learning for Medical Data Analysis. Communications in Computer and Information Science. 2019. V. 1084. P. 447–460.
  39. Losev A.G., Popov I.E., Petrenko A.Y. Gudkov A.G., Vesnin S.G., Chizhikov S.V. Some Methods for Substantiating Diagnostic Decisions Made Using Machine Learning Algorithms. Biomed Eng. 2022. № 55. P. 442–447.
Date of receipt: 31.01.2023
Approved after review: 07.02.2023
Accepted for publication: 20.02.2023