350 rub
Journal Nanotechnology : the development , application - XXI Century №3 for 2022 г.
Article in number:
Remote determination of the dam humidity portrait by a microwave radiometer from an unmanned aerial vehicle
Type of article: scientific article
DOI: https://doi.org/10.18127/j22250980-202203-01
UDC: 551.579.5
Authors:

I.A. Sidorov1, A.G. Gudkov2, V.D. Shashurin3, S.V. Chizhikov4, E.P. Novichikhin5

N.F. Khokhlov6, I.O. Porokhov7, V.E. Pchelintsev8, R.V. Agandeev9

1–4,8,9 Bauman Moscow State Technical University (Moscow, Russia)

5 Institute of Radio Engineering and Electronics named after V.A. Kotelnikov RAS (Fryazino, Russia)

6 Russian State Agrarian University – Moscow Timiryazev Agricultural Academy (Moscow, Russia)

7 JSC «Central radio-research institute named after academician A.I. Berg» (Moscow, Russia)

Abstract:

Thousands of earthen dams have been built in Russia to create accumulating reservoirs, protect low-lying areas from floods, hydropower and others. Sometimes, due to the presence of underground leaks, erosion of the dam occurs and a breakthrough with catastrophic consequences, as it was in Moscow in January 2019 with the flooding of the Tushinsky tunnel. Therefore, the task of timely identification of places of underground leaks of earthen dams is urgent.

The paper presents the results of an experimental study of the condition of earthen dams. Also, the analysis of the obtained soil moisture maps allows you to determine the locations of possible underground leaks.

The results of a flight experiment using a bipolarization microwave radiometer placed on board an unmanned aerial vehicle for remote determination of a portrait of soil moisture can be used to search for places of possible underground leaks. Also, this method of remote measurement of soil moisture can be used for the needs of agriculture, in particular for precision farming systems. In addition, the paper assesses the prospects of using microwave radiometric moisture meters for operational examination of the state of extended hydrological objects.

The study was carried out at the expense of the grant of the Russian Science Foundation No. 22-19-00063 dated 13.05.2022 https://rscf.ru/project/22-19-00063

 

Pages: 5-13
References
  1. Sidorov I.A., Gudkov A.G., Sister V.G., Ivannikova E.M., Leushin V.Yu. Monitoring gidrologicheskoy obstanovki vdol trass truboprovodov metodami mikrovolnovoy radiometrii. Khimicheskoye i neftegazovoye mashinostroyeniye. 2020. № 11. S. 34–36. (in Russian).
  2. Gudkov A.G., Sister V.G., Ivannikova E.M., Leushin V.Yu., Plyushchev V.A., Sidorov I.A., Chetyrkin D.Yu. O vozmozhnosti obnaruzheniya neftyanykh plenok na poverkhnosti vody metodami SVCh-radiometrii. Khimicheskoye i neftegazovoye mashinostroyeniye. 2019. № 1. S. 34–36. DOI: https://doi.org/10.1007/s10556-019-00580-2 (in Russian).
  3. Sidorov I.A., Soldatenko A.P., Gudkov A.G., Leushin V.Yu., Novichikhin E.P. Rezultaty naturnykh eksperimentov po monitoringu gidrologicheskoy obstanovki vdol avtomobilnykh dorog mnogochastotnoy polyarimetricheskoy sistemoy SVCh-radiometrov. Mashinostroitel. 2015. № 12. S. 46–55. (in Russian).
  4. Sister V.G., Ivannikova E.M., Gudkov A.G., Leushin V.Yu., Sidorov I.A., Plyushchev V.A., Soldatenko A.P. Opredeleniye ochagov lesnykh i torfyanykh pozharov s pomoshchyu SVCh-radiometricheskogo zondirovaniya. Khimicheskoye i neftegazovoye mashinostroyeniye. 2016. № 2. S. 32–33. (in Russian).
  5. Gulyayev Yu.V., Shutko A.M., Sidorov I.A. i dr. SVCh-radiometriya zemnoy i vodnoy poverkhnostey: ot teorii k praktike. Sofiya: Akademicheskoye izdatelstvo imeni prof. Marina Drinova. 2014. (in Russian).
  6. Jeu R.D., Parinussa R., Biemond L., Haarbrink R., Shutko A., Demontoux F., Provoost Y. Safety inspection of levees with L-band radiometry. 11th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment. MicroRad. 2010. P. 96–98. DOI: 10.1109/MICRORAD.2010.5559583
  7. Yashchenko A.S. Bobrov P.P. Osobennosti obrabotki dannykh SMOS Level 1S v zadachakh distantsionnogo zondirovaniya. Sovremennyye problemy distantsionnogo zondirovaniya Zemli iz kosmosa. 2017. T. 14. № 3. S. 78–91. DOI: 10.21046/2070-7401-2017-14-378-91 (in Russian).
  8. Shutko A., Abramov V., Haldin A., Novichikhin E., Krapivin V., Golovachev S., Pliushchev V., Sidorov I., Biriukov E., Haarbrink R., Archer F., Hristov P., Gavrailov E. Sea surface and land - sea contact zones sensing at passive microwaves and in optical band. Ecologica. 2009. № 55. P. 345–349.
  9. Shutko A.M., Krapivin V.F., Haarbrink R.B., Sidorov I.A., Novichikhin E.P., Archer F., Krissilov A.D. Practical Microwave Radiometric Risk Assesment (In English). Prof. Marin Drinov Publ. House, Bulg. Academy of Sciences. 2010. 100 p.
  10. Archer F., Shutko A., Coleman T., Haldin A., Sidorov I., Novichikhin E. Microwave Remote Sensing of Land Surface from Mobile Platform: The Alabama 2003-2005 Experiment. Abstract. To be presented at "The Int 7IEEE 2006 Geoscience & Remote Sensing Symposium (IGARSS'06)". Denver, CO, USA. 2006.
  11. Gudkov A.G., Leushin V.Yu., Sidorov I.A., Novichikhin E.P., Agasieva S.V., Gorlacheva E.N. Measurement and 3D Visualization of the Human Internal Heat Field by Means of Microwave Radiometry. Sensors. 2021. V. 21. Iss. 12. P. 4005. DOI: https://doi.org/10.3390/ s21124005
  12. Sedankin M.K., Vesnin S.G., Gudkov A.G., Leushin V.Yu., Sidorov I.A., Ovchinnikov L.M., Goryanin I.I. Portable microwave radiometer for wearable devices. Sensors and Actuators A: Physical. 2021. V. 318. P. 112506. DOI: https://doi.org/10.1016/j.sna.2020.112506
  13. Sidorov I.A., Gudkov A.G., Agasieva S.V., Khokhlov N.F., Chernikov A.S., Vagapov Y. A portable microwave radiometer for proximal measurement of soil permittivity. Computers and Electronics in Agriculture. 2022. V. 198. DOI: https://doi.org/10.1016/ j.compag.2022.107076
  14. Shutko A.M., Haldin A., Krapivin V., Novichikhin E., Sidorov I., Tishchenko Y., Haarbrink R., Georgiev G., Kancheva R., Nikolov H., Coleman T., Archer F., Pampaloni P., Paloscia S., Krissilov A., Carmona A. Microwave radiometry in monitoring and emergency mapping of water seepage and dangerously high ground waters. Journal of Telecommunications and Information Technology. 2007. P. 76–82.
Date of receipt: 01.07.2022
Approved after review: 15.07.2022
Accepted for publication: 31.08.2022