Journal Nanotechnology : the development , application - XXI Century №2 for 2021 г.
Article in number:
Intracavity antenna for multichannel radiothermograph
Type of article: scientific article
DOI: https://doi.org/10.18127/j22250980-202102-04
UDC: 615.471
Authors:

M.K. Sedankin1, S.G.Vesnin2, V.Yu. Leushin3, D.I. Dudkin4, I.I. Myshletsov5,  V.G. Nazarov6 , S.V. Agasieva7

1–3, 6 Bauman Moscow State Technical University (Moscow, Russia) 1 State Research Center – Burnasyan Federal Medical Biophysical Center  of Federal Medical Biological Agency (Moscow, Russia) 

2 RTM Diagnostic, LLC (Moscow, Russia) 3 Hyperion Ltd (Moscow, Russia)

4,5 Federal State Budget Educational Institution of Higher Education “MIREA-Russian Technological University” (Moscow, Russia)

7 Peoples' Friendship University of Russia (Moscow, Russia)

Abstract:

The development of an intracavitary multichannel diagnostic radiothermograph based on monolithic integrated circuits will allow creating a medical device that allows diagnosing diseases of internal organs of the human body.

Purpose: to consider the option of constructing a diagnostic intracavity antenna with several measurement channels for a multichannel radiothermograph built on the basis of monolithic integrated circuits.

A variant of constructing a multichannel radiothermograph for intracavity thermometry, implemented in the form of an intracavity antenna with five channels, a microwave switch and a microwave single-channel radiometer, is proposed. The intracavity antenna allows you to measure the temperature at five points of the biological cavity. The antennas are switched using a multi-channel switch integrated with the microwave radiometer.

The conducted theoretical studies confirm the possibility of using multichannel microwave radiometry in medicine for intracavitary thermometry The basis for creating a model of a multichannel microwave radiothermograph based on monolithic integrated circuits for intracavitary examination is laid.

Pages: 36-44
For citation

Sedankin M.K., Vesnin S.G., Leushin V.Yu., Dudkin D.I., Myshletsov I.I., Nazarov V.G., Agasieva S.V. Intracavity antenna for multichannel radiothermograph. Nanotechnology: development and applications – XXI century. 2021 V. 13. № 2. P. 36–44. DOI: https://doi.org/10.18127/j22250980-202102-04 (in Russian).

References
  1. Vesnin S., Turnbull A.K., Dixon J.M., Goryanin I. Modern microwave thermometry for breast cancer. Journal of molecular imaging & dynamics. 2017. V. 7. № 136. P. 10–1109.
  2. Gudkov A.G. Radioapparatura v usloviyah rynka. Kompleksnaya tekhnologicheskaya optimizaciya. M.: SAJNS-PRESS. 2008. S. 336.
  3. Agasieva S.V., Gudkov A.G., Leushin V.Yu. Povyshenie nadezhnosti i kachestva GIS i MIS SVCh. M.: OOO «Avtotest». Kn. 1. 2012.  S. 212 (in Russian).
  4. Agasieva S.V., Gudkov A.G., Leushin V.Yu. Povyshenie nadezhnosti i kachestva GIS i MIS SVCh. M.: OOO «Avtotest». Kn. 2. 2013.  S. 214 (in Russian).
  5. Agasieva S. V., Vetrova N. A., Gudkov A. G. Povyshenie nadezhnosti i kachestva GIS i MIS SVCh. M.: OOO NTP «Virazh-Centr». Kn. 3. 2016. S. 252 (in Russian).
  6. Sedankin M.K., Leushin V.Yu., Gudkov A.G., Vesnin S.G., Sidorov I.A., Agasieva S.V., Ovchinnikov L.M., Vetrova N.A. Antennyapplikatory dlya medicinskih mikrovolnovyh radiotermografov. Medicinskaya tekhnika. 2018. № 4. S.13–15 (in Russian).
  7. Kaprin A.D., Kostin A.A., Andryuhin M.I., Ivanenko K.V., Shegaj P.V., Popov S.V., Kruglov D.P., Mangutov F.Sh., Leushin V.Yu., Agasieva S.V. Mikrovolnovaya radiotermometriya v diagnostike nekotoryh urologicheskih zabolevanij. Medicinskaya tekhnika. 2019. № 2. S. 8–11 (in Russian).
  8. Gudkov A.G., Leushin V.Yu., Sidorov I.A., Vesnin S.G., Korolyov A.V., Porohov I.O., Sedankin M.K., Agasieva S.V., Chizhikov S.V., Gorlacheva E.N., Lazarenko M.I. Ispol'zovanie metoda mnogokanal'noj mikrovolnovoj radiometrii dlya funkcional'noj diagnostiki golovnogo mozga. Medicinskaya tekhnika. 2019. № 2. S. 22–25 (in Russian).
  9. Gudkov A.G., Leushin V.Yu., Vesnin S.G., Sidorov I.A., Sedankin M.K., Solov'yov Yu.V., Agasieva S.V., Chizhikov S.V., Gorbachyov D.A., Vidyakin S.I. Issledovaniya SVCh radiotermografa na osnove integral'nyh mikroskhem. Medicinskaya tekhnika. 2019. № 6. S. 29–32 (in Russian).
  10. Vesnin S.G., Sedankin M.K., Gudkov A.G., Leushin V.Yu., Sidorov I.A., Porohov I.O., Agasieva S.V., Vidyakin S.I. Pechatnaya antenna so vstroennym infrakrasnym datchikom temperatury dlya medicinskogo mnogokanal'nogo mikrovolnovogo radiotermografa. Medicinskaya tekhnika. 2020. № 4. S. 4–7 (in Russian).
  11. Gudkov A.G., Sedankin M.K., Leushin V.Yu., Vesnin S.G., Sidorov I.A., Agasieva S.V., Ovchinnikov L.M., Vetrova N.A. Antenna Applicators for Medical Microwave Radiometers. Biomedical Engineering. 2018. V. 52. № 4. P. 235–238. DOI: 10.1007/s10527-018-9820-1
  12. Gudkov A.G., Leushin V.Yu., Sidorov I.A., Vesnin S.G., Porokhov I.O., Sedankin M.K., Agasieva S.V., Chizhikov S.V., Gorlacheva E.N., Lazarenko M.I., Shashurin V.D. Use of Multichannel Microwave Radiometry for Functional Diagnostics of the Brain.Biomedical Engineering. 2019. V. 53. Is. 2. P. 108–111. DOI: 10.1007/s10527-019-09887-z.
  13. Kaprin A.D., Kostin A.A., Andryukhin M.I., Ivanenko K.V., Popov S.V., Shegai P.V., Kruglov D.P., Mangutov F.Sh., Leushin V.Yu., Agasieva S.V. Microwave Radiometry in the Diagnosis of Various Urological Diseases. Biomedical Engineering. 2019. V. 53. Is. 2. P. 87–91. DOI: 10.1007/s10527-019-09883-3.
  14. Novichikhin E.P., Sidorov I.A., Leushin V.Yu., Agasieva S.V., Chizhikov S.V. Local heat source detection inside of the human body by means of microwave radiothermography. Radioelektronika, Nanosistemy, Informacionnye Tehnologii. 2020. V. 12(2). P. 305–312. DOI: 10.17725/rensit.2020.12.305.
  15. Vesnin S.G., Sedankin M.K., Gudkov A.G., Leushin V.Y., Sidorov I.A., Porokhov I.O., Agasieva S.V., Vidyakin S.I. A Printed Antenna with an Infrared Temperature Sensor for a Medical Multichannel Microwave Radiometer. Biomedical Engineering. 2020. V. 54. Is. 4.  P. 235–239. DOI: 10.1007/s10527-020-10011-9.
  16. Hashukoeva A.Z., Comaeva E.A., Vodyanik N.D. Primenenie transabdominal'noj i vaginal'noj radiotermometrii v kompleksnoj diagnostike vospalitel'nyh zabolevanij pridatkov matki. Lechenie i profilaktika. 2012. № 1. S. 26–30 (in Russian).
  17. Patent US № 20100274105, class. A61B 5/015. Microwave endoscope detection and treatment system / Inventor: Carr K.L.(US). Assignee: Microwave Associates, Inc. (US). Appl. №. 06/232,820. Filed 09.02.1981. Publ. 10.12.1985. 
  18. Patent US № 5344435, class. A61N5/0601. Urethral inserted applicator prostate hyperthermia / Inventors: Turner P.F. et al., all of US. Assignee: BSD Medical Corporation (US). Appl. № 07/609,372. Filed 05.11.1990. Publ. 06.09.1994.
  19. Patent US № 59498450, class. A61B5/0507. Temperature-measuring microwave radiometer apparatus / Inventors: Sterzer F. et al., all of US. Assignee: MMTC, Inc. (US). Appl. № 08/415,302. Filed 03.04.1995. Publ. 18.11.1997.
  20. Gudkov A.G., Leushin V.Yu., Vesnin S.G. et al. Studies of a microwave radiometer based on integrated circuits. Biomedical Engineering. 2020. V. 53. № 6. P. 413–416.
  21. Sedankin M.K., Gudkov A.G., Leushin V.Y. et al. Microwave radiometry of the pelvic organs. Biomedical Engineering. 2019. V. 53. № 4. P. 288–292.
  22. Tikhomirov V.G. et al. Increasing efficiency of GaN HEMT transistors in equipment for radiometry using numerical simulation. Journal of physics: Conference series. IOP Publishing. 2019. V. 1410. № 1. P. 1–4. 
  23. Tikhomirov V.G. et al. Research of low noise pHEMT transistors in equipment for microwave radiometry using numerical simulation. Journal of physics: conference series. IOP Publishing. 2020. V. 1695. № 1. P. 1–4.
  24. Gudkov A.G., Vesnin S.G. et al. Portable microwave radiometer for wearable devices. Sensors and actuators, a: physical. 2021. V. 318. P. 1–10.
  25. Oficial'nyj sajt http://niremf.ifac.cnr.it/tissprop/
  26. Sedankin M. et al. System of rational parameters of antennas for designing a multi-channel multi-frequency medical radiometer. 2020 International Conference on Actual Problems of Electron Devices Engineering (APEDE). IEEE. P. 154–159.
  27. Sedankin M.K., Leushin V.Yu. i dr. Matematicheskoe modelirovanie teploobmennyh processov v molochnoj zheleze pri nalichii zlokachestvennoj opuholi. Medicinskaya tekhnika. 2018. № 3 (309). S. 33–36 (in Russian).
Date of receipt: 19.05.2021
Approved after review: 24.05.2021
Accepted for publication: 08.06.2021