Journal Nanotechnology : the development , application - XXI Century №2 for 2021 г.
Article in number:
Analysis of the tendency of development of biosensors based on GaN
Type of article: scientific article
DOI: https://doi.org/10.18127/j22250980-202102-02
UDC: 53.083.98
Authors:

E.A. Smetanin1, A.R. Vechkanov2, A.V. Gubanov3, S.I. Agasieva4

1–4 RUDN University (Moscow, Russia)

Abstract:

Statement of the problem of this article - one of the most important problems is protection from especially dangerous infectious diseases. The use of biosensors in clinical trials will significantly reduce the time for obtaining the results of analyzes, thereby speeding up the appointment of treatment to patients.

The purpose of the article is to present modern designs of biosensors based on gallium nitride, the possibilities of their application and characteristics. Consider the principles of operation, areas of application and characteristics.

As a result, the design of modern biosensors and modern trends in their use from various sources of literature in recent years are shown. Biosensors, principles of their action, areas of application and characteristics are considered, which will reduce the possible socio-economic damage from temporary disability for sick citizens due to the rapid and timely implementation of anti-epidemic measures.

Practical value: the proposed biosensors are of interest as devices for detecting diseases.

The use of biosensors in clinical disease research has several potential advantages over other clinical analysis methods, including increased analysis speed and flexibility, multipurpose analysis capability, automation, reduced diagnostic testing costs, and the ability to integrate molecular diagnostic tests into local healthcare systems.

Pages: 16-26
For citation

Smetanin E.A., Vechkanov A.R., Gubanov A.V., Agasieva S.I. Analysis of the tendency of development of biosensors based on GaN. Nanotechnology: the development, application – XXI Century. 2021. V. 13. № 2. Р. 16−26. DOI: https://doi.org/10.18127/j22250980202102-02 (in Russian).

References
  1. Oussama Z., Moussaab B., Amaria O. The Role of Nitride Materials for Biological Applications (Biosensors). Scholars Academic Journal of Biosciences. 2018. № 6. Р. 151–157. 
  2. Kavita T., Manju K. Sensor applications based on AlGaN/GaN heterostructures. Materials Science and Engineering. 2020. № 263.  P. 143–152. 
  3. Bozack M., Alur S., Gnanaprakasa T. J., Wang Y., Dai J., Hong J., Simonian A., Park M., Sharma Y. Biofunctionalized AlGaN/GaN high electron mobility transistor for DNA hybridization detection. Applied Physics Letters. 2012. № 23. Р. 100–104. 
  4. Bertani P., Lu W. Hybrid Organic–Nitride Semiconductor Nanostructures for Biosensor Applications. Functional Organic and Hybrid Nanostructured Materials: Fabrication, Properties, and Applications. 2018. № 13. Р. 485–518.
  5. Kokawa T., Sato T., Hasegawa H., Hashizume T. Liquid-phase sensors using open-gate AlGaN∕GaN high electron mobility transistor structure. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 2006. № 26. P. 1972–1976.
  6. Choi M.K., Kim G.S., Jeong J.T. Functionalized vertical GaN micro pillar arrays with high signal-to-background ratio for detection and analysis of proteins secreted from breast tumor cells. Scientific Reports. 2017. № 7. Р. 1–12.
  7. Peesa R.B., Kumar P.M., Panda D.K. Simulation of GaN MOS-HEMT based bio-sensor for breast cancer detection. Computer-Aided Developments: Electronics and Communication. 2019. № 1. P. 257–263. 
  8. Tai T., Sinha A., Sarangadharan I., Pulikkathodi A.K., Wang S. Design and Demonstration of Tunable Amplified Sensitivity of AlGaN/GaN High Electron Mobility Transistor (HEMT)-Based Biosensors in Human Serum. Analytical Chemistry. 2019. № 91. Р. 5953–5960. 
  9. Lee H., Bae M., Jo S., Shin J., Son D. H., Won C. AlGaN/GaN High Electron Mobility Transistor-Based Biosensor for the Detection of CReactive Protein. Sensors. 2015. № 8. Р. 416–426.
  10. Pulikkathodi A.K., Sarangadharan I., Chen Y.H., Lee G.B., Wang Y. Aptamer Functionalized AlGaN/GaN HEMT Biosensor Array for Electrical Enumeration of Circulating Tumor Cells. ECS Transactions. 2017. № 7. Р. 17–20. 
  11. Tai T., Sinha A., Sarangadharan I., Pulikkathodi A. K, Wang S., Shiesh S., Lee G., Wang Y. Aptamer-functionalized AlGaN/GaN Highelectron-mobility Transistor for Rapid Diagnosis of Fibrinogen in Human Plasma. Sensors and Materials. 2018. № 10.  Р. 321–333.
  12. Woo K., Kang W., Lee K., Lee P., Kim Y., Yoon T.S., Cho C.Y., Park K.H., Ha M.W., Lee H.H. Enhancement of cortisol measurement sensitivity by laser illumination for AlGaN/GaN transistor biosensor. Biosensors and Bioelectronics. 2020. № 159. P. 112–118.
  13. Shaveta H.M., Maali A., Rishu C. Rapid detection of biomolecules in a dielectric modulated GaN MOSHEMT. Journal of Materials Science: Materials in Electronics. 2020. № 31. P. 609–615.
  14. Praveen P., Yogesh P., Mridula G., Sneha K. Modeling and Simulation of AlGaN/GaN MOS-HEMT for Biosensor Applications. Sensors Journal. 2019. № 19. Р. 587–593.
  15. Hasina F.H., Trevino H., Castillo J. Characteristics of AlGaN/GaN HEMTs for Detection of MIG. Journal of Modern Physics. 2016. № 13. Р. 712–724.
  16. Gu Z., Wang J., Mia B., Zhao L., Liu X., Wu D., Li J. Highly sensitive AlGaN/GaN HEMT biosensors using an ethanolamine modification strategy for bioassay applications. RSC Advances. 2019. № 9. Р. 341–349.
  17. Xue D., Zhang H., Liang H., Liu J., Xia X. Influence of the ratio of gate length to source-drain distance on the sensitivity of the AlGaN/GaN HEMT based chemical sensors and biosensors. Proceedings of the SPIE. 2019. № 11. Р. 384–389.
  18. Sharma N., Joshi D., Chaturvedi N. An impact of bias and structure dependent LSD. Journal of Computational Electronics. 2014. № 13. Р. 503–508.
  19. Zhang H., Yang S., Sheng K. The Safe Operating Area of AlGaN/GaN-Based Sensor. Sensors Journal. 2021. № 21. Р. 241–247. 
  20. Lee С., Chiu Y. Gate-Recessed AlGaN/GaN ISFET Urea Biosensor Fabricated by Photoelectrochemical Method. Sensors Journal. 2016. № 16. Р. 518–523.
  21. Zhang H., Tu J., Yang S., Sheng K., Wang P. Optimization of gate geometry towards high-sensitivity AlGaN/GaN pH sensor. Talanta. 2019. № 205. Р. 120–134. 
  22. Cimalla I., Will F., Tonisch K., Niebelschütz M., Cimalla V., Lebedev V., Kittler G., Himmerlich M., Krischok S., Schaefer J. A., Gebinoga M., Schober A., Friedrich T., Ambacher O. AlGaN/GaN biosensor—effect of device processing steps on the surface properties and biocompatibility. Sensors and Actuators B: Chemical. 2007. № 123. P. 740–748.
  23. Agasieva S.V., Gudkov A.G., Ivanov Y.A., Meshkov S.A., Petrov V.I., Sinyakin V.Y., Schukin S.I. Prospects for application of radiofrequency identification technology with passive tags in invasive biosensor systems. Biomedical Engineering. 2015. V. 49. № 2.  P. 98–101. DOI: 10.1007/s10527-015-9506-x
  24. Agasieva S., Aleksandr G., Shashurin V., Vyuginov V., Tikhomirov V.G., Vidyakin S., Chizhikov S. Dependence analysis of the GaN HEMT parameters for space application on the thickness AlGaN barrier layer by numerical simulation. 2017 2nd International Conference on Opto-Electronic Information Processing, ICOIP 2017. Article № 8030703. P. 79–82. DOI: 10.1109/OPTIP.2017.8030703
  25. Agasieva, S.V., Tikhomirov V.G., Gudkov A., Petrov V., Zybin A., Yankevich V., Evseenkov A. Simulation of electric field distribution in GaN HEMTs for the onset of structure degradation. Proceedings of the 2017 11th International Workshop on the Electromagnetic Compatibility of Integrated Circuits. EMCCompo 2017. 2017. Article № 7998094. P. 115–118. DOI: 10.1109/EMCCompo.2017.7998094
  26. Gudkov A.G., Agasieva S.V., Tikhomirov V.G., Zherdeva V.V., Klinov D.V., Shashurin V.D. Perspectives in the Development of Biosensors Based on AlGaN/GaN HEMT. Biomedical Engineering. 2019. V. 53. Iss. 3. P. 196–200. DOI: 10.1007/s10527-019-09908-x
  27. Tikhomirov V.G., Gudkov A.G., Agasieva S.V., Popov M.K., Chizhikov S.V. Research of low noise pHEMT transistors in equipment for microwave radiometry using numerical simulation. Journal of Physics: Conference Series. 2020. V. 1695 (1). P. 012150.
  28. Gudkov A.G., Tikhomirov V.G., Agasiyeva S.V., Vyuginov V.N., Zherdeva V.V., Zybin A.A., Rybakov Yu.L., Gukasov V.M. Izucheniye vykhodnykh kharakteristik geterostrukturnykh tranzistorov dlya biosensorov metodom matematicheskogo modelirovaniya. Meditsinskaya fizika. 2017. №5. S. 82–86 (in Russian).
  29. Ivanov Yu.A., Gudkov A.G., Meshkov S.A., Shashurin V.D., Klevtsov V.A., Agasiyeva S.V., Sinyakin V.Yu. Primeneniye rezonansnotunnelnykh nanodiodov dlya povysheniya effektivnosti preobrazovatelya elektromagnitnoy energii invazivnykh biosensor-nykh sistem na baze tekhnologii radiochastotnoy identifikatsii. Elektromagnitnyye volny i elektronnyye sistemy. 2014. T. 19. № 4. S. 60–65 (in Russian).
Date of receipt: 19.05.2021
Approved after review: 24.05.2021
Accepted for publication: 08.06.2021