350 rub
Journal Nanotechnology : the development , application - XXI Century №3 for 2020 г.
Article in number:
The forecast of the industrial production index
DOI: 10.18127/j22250980-202003-01
UDC: 334.78
Authors:

E.N. Soboleva – Dr. Sc. (Econ.), Professor, Director of Educational Projects and Programs Department,  Fund of infrastructure and educational programs Rosnano (Moscow)

E.N. Gorlacheva – Ph.D. (Econ.), Associate Professor,  Bauman Moscow State Technical University

E-mail: gorlacheva@yandex.ru

N.E. Mikhailov – Student, 

Industrial Logistic Department, Bauman Moscow State Technical University; Trainee, Strategic Development 

and Innovations Department, Ministry of Economic Development of the Russian Federation

E-mail: mikhailovnikolay.ed@gmail.com

Abstract:

Nowadays the relevant management instrument is the shift from the reactive actions to forecasting ones. One of the realizations of this approach is the forecast of economic activities indicators of industrial manufacturing. In Russia the industrial production index is being used now as one of the widespread indicators of the industrial economic activities.

On the base of Box-Jenkins’ model the forecast model will be elaborated in order to determine the tendencies of the industrial development.

The forecast model of industrial production index has been elaborated. 

The offered instrument allows forecasting the possible development trajectories of industrial production index and realizing the forecast function in the industrial enterprises management.

Pages: 5-16
References

​​​​​​

  1. Bat'kovskij A.M., Fomina A.V. Prognozirovanie razvitiya radioelektronnoj promyshlennosti Rossii s uchetom urovnya innovacionnosti mirovoj ekonomiki. Radiopromyshlennost'. 2016. № 1. S. 127–138  (In Russian).
  2. Gudkov A.G. i dr. Tekhnologii mezhfirmennogo vzaimodejstviya. M.: SAJNS-PRESS. 2015. 184 s.  (In Russian).
  3. Boivin J., Ng S. Understanding and comparing factor-based forecasts. NBER Working Paper Series 11285. https://www.nber.org/papers/w11285.pdf. Accessed on 14.08.2019
  4. Chrobok R., Kaumann O., Wahle J., Schreckenberg M. Different methods of traffic forecast based on real data. European Journal of Operational Research. 2004. V.155. Is. 3. P. 558–568.
  5. Stock J, Watson M. Dynamic Factor Models. In Oxford Handbook on Economic Forecasting, eds. Michael P. Clements and David F. Hendry. Oxford: Oxford University Press. 2011.. http://nrs.harvard.edu/urn-3:HUL.InstRepos:28469541. Accessed on 10.08.2019 6.                Boks Dzh., Dzhenkins G. Analiz vremennyh ryadov: prognoz i upravlenie. M.: MIR. 1974. 406 s.  (In Russian).
  6. Prikaz Rosstata ot 08.05.2014 N 301 «Ob utverzhdenii Oficial'noj statisticheskoj metodologii ischisleniya indeksa promyshlennogo proizvodstva». Rezhim dostupa: www.gks.ru. Data obrashcheniya: 17.03.2020  (In Russian).
  7. Obshcherossijskij klassifikator vidov ekonomicheskoj deyatel'nosti. Rezhim dostupa: okved2020.rf. Data obrashcheniya: 18.03.2020  (In Russian).
  8. Bogdanova A.L. Operezhayushchie pokazateli – instrument ekonomicheskogo prognozirovaniya. Ekonomicheskaya nauka sovremennoj Rossii. 2018. № 2 (81). S. 25–53 (In Russian).
  9. Gudkov A.G. i dr. Nelinejnye modeli tekhnologicheskih innovacij. Nelinejnyj mir. 2013. T. 11. № 4. S. 266–273 (In Russian).
  10. Hank D.E., Uichern D.U., Rajts A. Dzh. Metod Boksa–Dzhenkinsa (ARIMA). Biznes-prognozirovanie. M.: Izd-vo «Vil'yams». 2016. 656 s.  (In Russian).
  11. Ihaka R., Gentleman R. R: A Language for Data Analysis and graphics. Journal of Computational and Graphical Statistics. 1996. V. 5. № 3. P. 299–314.
  12. Magnus Ya.R., Katyshev P.K., Pereseckij A.A. Modeli Boksa–Dzhenkinsa (ARIMA). M.: Delo. 2004. 580 s.  (In Russian).
Date of receipt: 10 апреля 2020 г.