350 rub
Journal Nanotechnology : the development , application - XXI Century №2 for 2020 г.
Article in number:
Element base of microwave MIC for microwave radiothermometry
DOI: 10.18127/j22250980-202002-06
UDC: 621.382
Authors:

S.V. Chizhikov – Post-graduate Student, 

Department of Instrumentation Technology, Bauman Moscow State Technical University

E-mail: chigikov95@mail.ru

Yu.V. Solov’ev – Ph.D. (Eng.), Deputy Director, JSC “Svetlana-Electronpribor” (St.-Petersburg); 

Senior Research Scientist, Research Institute of Radioelectronics and Laser Engineering  at Bauman Moscow State Technical University

E-mail: solovev@svetlana-ep.ru

Abstract:

Statement of the problem. The method of microwave radiothermometry allows to get information about the internal temperature of the patient's tissues by measuring the intensity of their own electromagnetic radiation in the ultra-high frequency range. Measurement of the power of the noise signal coming from the antenna output occurs in microwave receivers-radiothermometers, which have a number of significant requirements in terms of receiving, amplifying and processing the microwave signal.

The use of the element base in a monolithic design will increase the variability of circuit solutions in the development of modern medical microwave radiothermometers, thereby, improve the technical characteristics and expand the functionality of devices.

Aim of the work – the purpose of work is to carry out an analytical review of the element base of the microwave range, made in a monolithic integrated design, for use in medical microwave radiothermometers.

Results. The analysis of the main design elements of the radiothermometer receiver from the point of view of their possible application in a monolithic integrated design was carried out. The analytical review of the microwave element base in a monolithic design showed wide opportunities in the field of circuit solutions based on the domestic element component base for use in medical radiothermometers.

Practical significance. The use of monolithic integrated circuits for various purposes based on semiconductor heterostructures materials group A3B5 allows to ensure the required performance of the radiometer in terms of reception, amplification and processing of the microwave signal, to significantly increase functionality and implement structural performance with a significant reduction in weight and size characteristics of the developed medical device.

The research was carried out with the financial support of the Russian science Foundation in the framework of agreement No. 19-1900349 in the theme: “A method and a multichannel multifrequency microwave radiothermography on the basis of monolithic integrated circuits for finding the 3D distribution and dynamics of brightness temperature in the depths of the human body”.

Pages: 48-57
References
  1. Gudkov A.G., Verba V.S., Gandurin V.A., Leushin V.Yu., Plyushchev V.A. Ispol'zovanie metodov radiolokacii v radiochastotnom i opticheskom diapazonah dlya vyyavleniya patologij zhivyh tkanej cheloveka. SVCH-tekhnika i telekommunikacionnye tekhnologii (KryMi-Ko’2006): Materialy XVI Mezhdunar. Krymskoj konf. Sevastopol'. 2006. T. 2. S. 903–904 (In Russian).
  2. Sedankin M.K., Gudkov A.G., Leushin V.Yu., Vesnin S.G., Sidorov I.A., Chupina D.N., Agasieva S.V., Skuratov V.A., Chizhikov S.V. Mikrovolnovaya radiometriya organov malogo taza. Medicinskaya tekhnika. 2019. № 4. S. 45–49 (In Russian).
  3. Gudkov A.G., Shashurin V.D., Chizhikov S.V. i dr. Ispol'zovanie metoda mnogokanal'noj mikrovolnovoj radiometrii dlya funkcional'noj diagnostiki golovnogo mozga. Medicinskaya tekhnika. 2019. № 2 (314). S. 22–25 (In Russian).
  4. Gulyaev Yu.V., Verba V.S., Gandurin V.A., Plyushchev V.A., Leushin V.Yu., Cyganov D.I. Passivnye i aktivnye radiolokacionnye metody issledovanij i diagnostiki zhivyh tkanej cheloveka. Biomedicinskie tekhnologii i radioelektronika. 2006. № 11. C. 14–20 (In Russian).
  5. Sedankin M.K., Leushin V.Yu., Gudkov A.G., Vesnin S.G., Hromov D.A., Porohov I.O., Sidorov I.A., Agasieva S.V., Gorlacheva E.N. Modelirovanie sobstvennogo teplovogo izlucheniya pochki v mikrovolnovom diapazone. Medicinskaya tekhnika. 2019. № 1. S. 44–47 (In Russian).
  6. Gudkov A.G., Agasieva S.V. i dr. Issledovanie vozmozhnostej radiochastotnoj identifikacii s passivnymi metkami v invazivnoj biosensorike. Medicinskaya tekhnika. 2015. № 2. S. 26–29 (In Russian).
  7. Gudkov, A.G., Sister, V.G., Ivannikova, E.M., Sidorov, I.A., Chetyrkin, D.Y. On the Possibility of Detecting Oil Films on a Water Surface by Methods of Microwave Radiometry. Chemical and Petroleum Engineering. 2019. V. 55. P. 57–62.
  8. Vesnin S., Sedankin M., Ovchinnikov, Leushin V., Skuratov V., Nelin I., Konovalova A. Research of a microwave radiometer for monitoring of internal temperature of biological tissues. Eastern-European Journal of Enterprise Technologies. 2019. № 4/5 (100).
  9. Sedankin M.K., Leushin V.Yu., Gudkov A.G., Vesnin S.G., Sidorov I.A., Agasieva S.V., Ovchinnikov L.M., Vetrova N.A. Antenny-applikatory dlya medicinskih mikrovolnovyh radiotermografov. Medicinskaya tekhnika. 2018. № 4. S. 13–15 (In Russian).
  10. Bobrihin A.F., Gudkov A.G., Leushin V.Yu., Los' V.F., Popov V.V., Porohov I.O., Sidorov I.A. Modelirovanie antenn-applikatorov unificirovannyh antennyh reshetok modul'nogo tipa dlya mnogokanal'nyh sistem radiotermokartirovaniya. Antenny. 2014. № 2. S. 17–26 (In Russian).
  11. Gulyaev Yu.V., Leushin V.Yu., Gudkov A.G., ShChukin S.I., Vesnin S.G., Kublanov V.S., Porohov I.O., Sedankin M.K., Sidorov I.A. Pribory dlya diagnostiki patologicheskih izmenenij v organizme cheloveka metodami mikrovolnovoj radiometrii. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2017. T. 9.  № 2. S. 27–45 (In Russian).
  12. Stacenko L.G., Pugovkina O.A. Proektirovanie SVCh-ustrojstv dlya mikrovolnovoj radiotermometrii. Izv. YuFU. Ser. Tekhnicheskie nauki. 2014. № 10.  S. 127–135 (In Russian).
  13. Gudkov A.G., Popov V.V., Chalyh A.E. i dr. Nauchno-tekhnicheskie serii. Ustrojstva SVCh i antennye sistemy. Kn.2. Modelirovanie, proektirovanie i tekhnologii SVCh-ustrojstv i FAR: Kollektivnaya monografiya. Pod. Red. A.Yu. Grineva. M.: Radiotekhnika. 2014. 198 s. (In Russian).
  14. Gudkov A.G. Process razrabotki novogo vysoko¬tekhnologichnogo naukoemkogo tovara. Naukoemkie tekhnologii. 2003. T. 4. № 6. S. 69–83 (In Russian).
  15. Gudkov A.G. Kompleksnaya tekhnologicheskaya optimizaciya medicinskoj tekhniki na vsekh etapah ee zhiznennogo cikla. Biomedicinskaya radioelektronika. 2012. № 5. S. 51–61 (In Russian).
  16. Gudkov A.G. Radioapparatura v usloviyah rynka. Kompleksnaya tekhnologicheskaya optimizaciya. M.: SAJNS-PRESS. 2008. 336 s. (In Russian).
  17. Anzimirov V.L., Gudkov A.G., Leushin V.Yu., Cyganov D.I. Sovremennye vozmozhnosti i perspektivy nejroteplovideniya. Biomedicinskaya radioelektronika. 2010. № 3. S. 49–54 (In Russian).
  18. Sedankin M. K. i dr. Mnogokanal'nyj mikrovolnovyj radiotermometr. Mezhdunar. Nauch.-Tekh. Konf. «Informatika i tekhnologii. Innovacionnye tekhnologii v promyshlennosti i informatike. 2017. S. 348–350 (In Russian). 
  19. V'yuginov V.N., Gudkov A.G., Korolev A.V., Leushin V.Yu., Plyushchev V.A., Popov V.V., Sidorov I.A. Elektronnyj modul' mnogokanal'nogo SVCh trakta dlya sistem radiotermokartirovaniya. Elektromagnitnye volny i elektronnye sistemy. 2014. № 1. S. 27–34 (In Russian).
  20. Agasieva S.V., Gudkov A.G., Korolev A.V., Leushin V.Yu., Plyushchev V.A., Sidorov I.A. Rezul'taty razrabotki unificirovannogo priemnogo modulya dlya mnogokanal'nyh medicinskih radiotermografov. XXIV Mezhdunar. Krymskaya konferenciya «SVCh-tekhnika i telekommunikacionnye tekhnologii» (KryMiKo’2014). Sevastopol', 7–13 sentyabrya 2014 g.: Materialy konf. v 2-h t. Sevastopol': Veber. 2014. T. 2. S. 1045–1046 (In Russian).
  21. Leushin V.Yu., Shashurin V.D., Chizhikov S.V. i dr. Rezul'taty razrabotki eksperimental'nogo obrazca pribora dlya neinvazivnoj diagnostiki sostoyaniya golovnogo mozga s ispol'zovaniem metoda mnogokanal'noj mikrovolnovoj radiometrii. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2019. T. 11.  № 1. S. 44–50 (In Russian).
  22. V'yuginov V.N., Gudkov A.G., Korolev A.V., Leushin V.Yu., Plyushchev V.A., Popov V.V., Sidorov I.A. Elektronnyj modul' mnogokanal'nogo SVCh trakta dlya sistem radiotermokartirovaniya. Elektromagnitnye volny i elektronnye sistemy. 2014. T. 19. № 1. S. 27–34 (In Russian).
  23. Gudkov A.G. Elektronnye ustrojstva SVCh. Kn.2. Pod red. I.V. Lebedeva. M.: Radiotekhnika. 2008. 400 s. (In Russian).
  24. Agasieva S.V., Gudkov A.G. i dr. Povyshenie nadezhnosti i kachestva GIS i MIS SVCh. Kn. 1. Pod red. A.G. Gudkova i V.V. Popova. M.: OOO «Avtotest». 2012. 212 s. 
  25. Agasieva S.V., Gudkov A.G. i dr. Povyshenie nadezhnosti i kachestva GIS i MIS SVCh. Kn. 2. Pod red. A.G. Gudkova i V.V. Popova. M.: OOO «Avtotest». 2013. 214 s. (In Russian).
  26. Agasieva S.V., Gudkov A.G., Tihomirov V.G. i dr. Povyshenie nadezhnosti i kachestva GIS i MIS SVCh. Kn. 3. Pod red. V.N. V'yuginova, A.G. Gudkova i V.V. Popova. M.: OOO NTP «Virazh-Centr». 2016. 252 s. (In Russian).
  27. Parisa Momenroodaki, Zoya Popovic, Robert Scheeler A 1.4-GHz Radiometer for Internal Body Temperature Measurements, Proceedings of the 45th European Microwave Conference. 2015. P. 694–697.
  28. Bushminskij I.P., Gudkov A.G., Dergachev V.F. i dr. Konstruktorsko-tekhnologicheskie osnovy proektirovaniya poloskovyh mikroskhem / Pod. red. I.P. Bushminskogo. M.: Radio i svyaz'. 1987. 272 s. (In Russian).
  29. Gudkov A. The prospects of creating of microwave radiothermography based on monolithic integrated circuits, ITM Web of Conferences 2019. 30. 13001.
  30. V'yuginov V.N., Grozina M.I., Gudkov A.G. i dr. Monolitnye integral'nye ustrojstva SVCh. Elektromagnitnye volny i elektronnye sistemy. 2014. T. 22. № 4. S. 45–59 (In Russian).
  31. Gudkov A.G. Metodologiya kompleksnoj tekhnologicheskoj optimizacii parametrov SVCh-priborov na osnove geterostruktur. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2019. T. 11. № 2. S. 5–25 (In Russian).
  32. Patent № 2646536 (RF). Geterostrukturnyj polevoj tranzistor na osnove nitrida galliya s uluchshennoj temperaturnoj stabil'nost'yu vol't-ampernoj harakteristiki / A.G. Gudkov, S.V. Chizhikov i dr. (In Russian).
  33. Gudkov A., Agasieva S.V., Tikhomirov V.G. etc. Simulation of electric field distribution in GaN HEMTs for the onset of structure degradation. Proceedings of the 2017 11th International Workshop on the Electromagnetic Compatibility of Integrated Circuits, EMCCompo. 2017. P. 115–118. DOI: 10.1109/EMCCompo.2017.7998094.
  34. Gudkov A.G., Tikhomirov V.G. etc. Evaluation of the influence mode on the CVC GaN HEMT using numerical modeling. Journal of Physics: Conference Series. 2016. V. 741. Is. 1. Art. no. 012024 (3rd International School and Conference on Optoelectronics, Photonics, Engineering and Nanostructures, SaintPetersburg OPEN 2016). DOI:10.1088/1742-6596/741/1/012024.
  35. Gudkov A.G., Chizhikov S.V., Agasieva S.V., Tikhomirov V.G., Dynaiev D.D., Popov M.K. Increasing efficiency of GaN HEMT transistors in equipment for radiometry using numerical simulation. Journal of Physics: Conference Series. 2019. V. 1410. № 012191. 
  36. Gudkov A., Agasieva S.V., Tikhomirov V.G. et al. The sensitivity research of multiparameter biosensors based on HEMT by the mathematic modeling method. Journal of Physics: Conference Series. 2017. V. 917. Art. no. 042016 (Saint Petersburg OPEN 2017) DOI:10.1088/1742-6596/917/4/042016.2.
  37. Shkol'nyj V.N. Suncov S.B., Kondratenko A.V., Shishkin D.A., Alekseev K.A., Karaban V.M. Proektirovanie i ispytaniya pHEMT GaAs MIS kommutiruemogo po vhodu MShU sobstvennogo proizvodstva dlya apparatury avtonomnoj radionavigacii KA. Zhurnal Sibirskogo federal'nogo universiteta. Ser. Tekhnika i tekhnologii. 2016. T. 9. № 2. S. 204–213 (In Russian).
  38. Sal'nikov A.S., Dobush I.M., Babak L.I., Torhov N.A. Eksperimental'noe issledovanie i postroenie modelej passivnyh komponentov SVCh monolitnyh integral'nyh skhem s uchetom tekhnologicheskogo razbrosa parametrov. Doklady TUSUR. Ser. Elektronika izmeritel'naya tekhnika, radiotekhnika i svyaz'. Dekabr' 2012. № 2 (26). Ch. 2. S. 113–118 (In Russian).
  39. Stacenko L.G., Pugovkina O.A. Proektirovanie SVCh-ustrojstv dlya mikrovolnovoj radiotermometrii. Izv. YuFU. Ser. Tekhnicheskie nauki. 2014. № 10 (159). S. 127–135 (In Russian).
Date of receipt: 27 апреля 2020 г.