350 rub
Journal Nanotechnology : the development , application - XXI Century №1 for 2020 г.
Article in number:
Calculation of electromagnetic field of spiral antenna of plasma chemical etching unit
DOI: 10.18127/j22250980-202001-04
UDC: 537.5
Authors:

H.R. Sagatelyan – 

Dr. Sc. (Eng.), Professor, Bauman Moscow State Technical University 

E-mail: h_sagatelyan@mail.ru

I.Yu. Grachev

Student, Bauman Moscow State Technical University 

E-mail: soweo8@gmail.com

K.N. Bugorkov – 

Deputy Head of Technological Department, V.I. Kuznetsov Research Institute of Applied Mechanics

E-mail: Milan85@yandex.ru

N.V. Fedorkova – 

Ph.D. (Eng.), Associate Professor, Bauman Moscow State Technical University

E-mail: k_rl6@bmstu.ru

Abstract:

Statement of the problem. Plasma-chemical etching (PCE) is one of the key nanotechnological operations in microelectronics. PCE are also used in the manufacture of diffraction optics parts. The most effective from a technological point of view is inductively coupled plasma, which provides the highest plasma density. However, the depth distribution of the formed relief turns out to be uneven over the entire area of the treated surface. Obviously, this is due to the uneven distribution of charged particles. However, to date, insufficient attention has been paid to the analytical consideration of the distribution of the electromagnetic field in the volume of the vacuum chamber.

Aim of the work. Development of a method for calculating the distribution of magnetic induction and electric intensity of the electromagnetic field created in the cavity of a vacuum chamber by a flat inductor in the form of a spiral antenna.

Results. Procedure was developed for calculating the distribution of magnetic induction and electric intensity of the electromagnetic field created in a high-frequency discharge plasma by a flat spiral antenna. Magnetic induction is calculated based on the application of the Biot-Savart-Laplace law for a closed loop with current. The number of closed turns is taken equal to the number of spiral turns of the antenna in compliance with the dimensions of the antenna and the pitch of the turns. The electric field strength is calculated based on the application of the Faraday law of electromagnetic induction (the third Maxwell equation, written in the integral form). Spatial plots of the distribution of magnetic induction and electric intensity are obtained for the cases of one turn, two turns, and any predetermined number of turns.

Practical significance. The proposed model and the developed calculation method can be used both in the design of new plasmachemical etching plants to ensure increased uniformity in the distribution of the characteristics of the electromagnetic field in the required area of the vacuum chamber, and in the design of technological equipment for the use of PCE installations of existing designs with the highest efficiency of group or individual processing of workpieces.

Pages: 29-42
References
  1. Lieberman M.A., Lichtenberg A.J. Principles of plasma discharges and materials processing. Hoboken, New Jersey: John Wiley & Sons, Inc., 2005. P. 285–325.
  2. Galperin V.A., Danilkin E.V., Mochalov A.I. Processy plazmennogo travleniya v mikro- i nanotekhnologiyah [Elektronnyj resurs]: Ucheb. posobie. Pod red. S.P. Timoshenkova. M.: BINOM. Laboratoriya znanij. 2013. S. 39–42.
  3. Tomilin V.I., Tomilina N.P., CHernov V.K., Barashkov V.A., Tomkin A.M. Fiziko-himicheskie osnovy tekhnologii elektronnyh sredstv: Ucheb. posobie po laboratornomu praktikumu. Krasnoyarsk: Izd-vo SFU. 2007. S. 7–26. http://files.lib.sfu-kras.ru/ebibl/umkd/136/u_lab.pdf.
  4. Pedersen M., Huff M. Plasma Etching of Deep High-Aspect Ratio Feauters Into Fused Silica. Journal of Microelectronical Systems. 2017. V. 26. № 2.  P. 448–455.
  5. Knizikevicius R. Simulations of Si and SiO2 etching in SF6 + O2 plasma. Acta Physica Polonica A. 2010. V. 117. № 3. P. 478–483.
  6. Kokkoris G., Gogolides E., Boudouvis A.G. Etching of SiO2 features in fluoro-carbon plasmas: Explanation and prediction of gas-phase-composition effects on aspect ratio dependent phenomena in trenches. J. Appl. Phys. 2002. V. 91. № 5 (1 March). P. 2697–2707.
  7. Odinokov S.B., Sagatelyan G.R., Kovalev M.S., Bugorkov K.N. Osobennosti plazmohimicheskogo travleniya kvarcevogo stekla pri formirovanii glubokogo rel'efa na precizionnyh detalyah priborov. Opticheskij zhurnal. 2019. T. 86. № 5. S. 70–77.
  8. Wang S., Zhou C., Ru H., Zhang Y. Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology. Applied Optics. 2005.V. 44. № 21. P. 4429–4434. 
  9. Kazanskij N.L., Kolpakov V.A. Formirovanie opticheskogo mikrorel'efa vo vneelektrodnoj plazme vysokovol'tnogo gazovogo razryada. M.: Radio i svyaz'. 220 s.
  10. Sojfer V.A., Kotlyar V.V., Doskolovich L.L. Difrakcionnye opticheskie elementy v ustrojstvah nanofotoniki. Komp'yuternaya optika. 2009. T. 33. № 4.  S. 352–368.
  11. Odinokov S.B., Sagatelyan G.R., Kovalev M.S. Raschet, konstruirovanie i izgotovlenie difrakcionnyh i gologrammnyh opticheskih elementov: Ucheb. posobie. M.: Izd-vo MGTU im. N.E. Baumana. 2014. S. 42–59.
  12. Odinokov S.B., Sagatelyan G.R., Kovalev M.S., Bugorkov K.N. Vliyanie skin-effekta na struktury rel'efno-fazovyh opticheskih elementov, poluchaemyh metodom plazmohimicheskogo travleniya. Opticheskij zhurnal. 2019. T.86. № 9. S. 78–86.
  13. Odinokov S.B., Sagatelyan G.R, Kovalyov M.S. et al. Creation of doe to form the calibration dot patterns inside the optical systems. Computer Optics. 2013. V. 37. № 3. P. 341–351.
  14. Odinokov S.B., Sagatelyan G.R. Tekhnologiya izgotovleniya difrakcionnyh i gologrammnyh opticheskih elementov s funkcional'nym mikrorel'efom poverhnosti metodom plazmohimicheskogo travleniya. Vestnik MGTU im. N.E. Baumana. Ser. Priborostroenie. 2010. № 2. S. 92–104. 
  15. Konovalov S.F., Ponomarev YU.A., Majorov D.V., Podchezercev V.P., Sidorov A.G. Gibridnye mikroelektromekhanicheskie giroskopy i akselerometry. Nauka i obrazovanie: elektronnoe nauchno-tekhnicheskoe izdanie. 2011. №10. S. 1–23. http://technomag.edu.ru/doc/219257.html.
  16. Vetrova E.V., Smirnov I.P., Kozlov D.V., Zapetlyaev V.M. Osobennosti sozdaniya chuvstvitel'nyh elementov kremnievyh i kvarcevyh mayatnikovyh akselerometrov. Raketno-kosmicheskoe priborostroenie i informacionnye sistemy. 2017. T. 4. Vyp. 2. S. 95–102. 
  17. Odinokov S.B., Sagatelyan G.R., Drozdova E.A., Betin A.YU. ZHidkostnoe travlenie kremniya pri izgotovlenii gologrammnyh opticheskih elementov. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2018. T. 10. № 2. S. 38–51.
  18. U.S. Department of Health and Human Services. Hazardous Substances Data Bank (HSDB, online database). National Toxicology Information Program, National Library of Medicine, Bethesda, MD. 2015. http://toxnet.nlm.nih.gov/newtoxnet/hsdb.htm
  19. Vinogradov A.I., Zaryankin N.M., Prokopev E.P., Timoshenkov S.P., Mikkhailov Yu.A. The optimization of parameters of deep plasma chemical etching of silicon for the elements of microelectromechanic systems. Russian Microelectronics. 2011. V. 40. № 7. December. P. 441–445.
  20. Kaiser T.J., Allen M.G. A Pendulous Oscillating Gyroscopic Accelerometer Fabricated Using Deep-Reactive Ion Etching. Journal of microelectromechanical systems. 2003. V. 12. № 1. February. P. 21–28.
  21. Li W.T., Bulla D.A.P., Love J., Luther-Davies B., Charles C., Boswell R. Deep dry-etch of silica in a helicon plasma etcher for optical waveguide fabrication. J. Vac. Sci. Technol. A. 2005. V. 23(1). Jan/Feb. P. 146–150. DOI: 10.1116/1.1842114.
  22. Noemaun A.N., Mont F.W., Cho J., Schubert E.F., Kim G.B., Sone Ch. Inductively coupled plasma etching of gradedrefractive-index layers of TiO2 and SiO2 using an ITO hard mask. J. Vac. Sci. Technol. A. 2011. V. 29(5). Sep/Oct. P. 051302-1–051302-6.
  23. Agasieva S.V., Gudkov A.G., Leushin V.YU. i dr. Povyshenie nadezhnosti i kachestva GIS i MIS SVCH. Kn. 1. Pod red. A.G. Gud-kova i V.V. Popova. M.: OOO «Avtotest». 2012. 212 s.
  24. Agasieva S.V., Gudkov A.G. Leushin V.YU. i dr. Povyshenie nadezhnosti i kachestva GIS i MIS SVCH. Kn. 2. Pod red. A.G. Gud-kova i V.V. Popova. M.: OOO «Avtotest». 2013. 214 s.
  25. Agasieva S.V., Gudkov A.G., Tihomirov V.G., Leushin V.YU. i dr. Povyshenie nadezhnosti i kachestva GIS i MIS SVCH. Kn. 3. Pod red. V.N. V'yuginova, A.G. Gudkova i V.V. Popova. M.: OOO NTP «Virazh-Centr». 2016. 252 s.
  26. Grachev I.YU., Sagatelyan G.R., Bugorkov K.N. Analiz raspredeleniya aktivnogo gaza v reaktore pri plazmohimicheskom travlenii. Estestvennye i tekhnicheskie nauki. 2018. № 4 (118). S. 206–207.
  27. Grachev I.YU., Sagatelyan G.R., Bugorkov K.N. Issledovanie osobennostej raspredeleniya himicheski aktivnyh chastic v rabochej kamere ustanovki plazmohimicheskogo travleniya. Sb. dokladov konferencii «Opticheskie tekhnologii, materialy i sistemy» (Optotekh – 2018) Fiziko-tekhnologicheskogo instituta MIREA – Rossijskogo tekhnologicheskogo universiteta. Pod red. V.S. Kondratenko. M. 2018. S. 121–127.
  28. Grachev I.YU., Sagatelyan G.R., Bugorkov K.N. Analiz raspredeleniya aktivnogo gaza v reaktore pri plazmohimicheskom travlenii. Sb. trudov konferencii Informatika i tekhnologii. Innovacionnye tekhnologii v promyshlennosti i informatike (RNTK FTI-2018). 2018. S. 441–445.
  29. Berlin E.V., Grigor'ev V.YU., Sejdman L.A. Induktivnye istochniki vysokoplotnoj plazmy i ih tekhnologicheskie primeneniya. M.: Tekhnosfera. 2018. 461 s.
  30. Dudin S.V., Zykov A.V., Dahov A.N., Farenik V.I. Experimental research of ICP reactor for plasma-chemical etching. Problems Atomic Sci. and Technol. Ser.: Plasma Physics (12). 2006. № 6. P. 189–191.
  31. Odinokov S.B., Sagatelyan G.R., Goncharov A.S., Kovalev M.S., Solomashenko A.B., Verenikina N.M. Eksperimental'nye issledovaniya processa plazmohimicheskogo travleniya stekla pri izgotovlenii difrakcionnyh i gologrammnyh opticheskih elementov. Nauka i obrazovanie: nauchnoe izdanie MGTU im. N.E. Baumana. Elektronnyj nauchno-tekhnicheskij zhurnal. 2012. № 5. S. 391–410. DOI: 10.7463/0512.0408094.
  32. Podlipnov V.V., Kolpakov V.A., Kazanskij N.L. Issledovanie travleniya dioksida kremniya vo vneelektrodnoj plazme s ispol'zovaniem hromovoj maski. Komp'yuternaya optika. 2016. T. 40. № 6. S. 830–836.
  33. Volkov A.V., Volodkin B.O., Dmitriev S.V., Eropolov V.A., Moiseev O.YU., Pavel'ev V.S. Tonkoplenochnaya med' kak maskiruyushchij sloj v processe plazmohimicheskogo travleniya kvarca. Komp'yuternaya optika. 2007. T. 31. № 4. S. 53–55.
  34. Volkov A.V., Moiseev O.YU., Poletaev S.D., CHistyakov I.V. Primenenie tonkih plenok molibdena dlya kontaktnyh masok pri izgotovlenii mikrorel'efov elementov difrakcionnoj optiki. Komp'yuternaya optika. 2014. T. 38. № 4. S. 757–762.
  35. Fotoshablony na osnove kvarca i stekla. AO «NII MV» [Elektronnyj resurs]. URL: http://www.niimv.ru/products/maskirovannye-plastiny.html.
  36. Kruchinin D.YU., Farafontova E.P. Fotolitograficheskie tekhnologii v proizvodstve opticheskih detalej: Ucheb. posobie. Ekaterinburg: Izd-vo Ural. un-ta, 2014. 51 s. 
  37. Fedotov A., Agabekov YU., Machikin V. Mnogofunkcional'nye nanokompozitnye pokrytiya. Nanoindustriya. 2008. № 1. S. 24–26. 
  38. Vardanyan E.L., YAgafarov I.I., Budilov V.V., Kireev R.M. Matematicheskoe modelirovanie processa naneseniya uprochnyayushchih pokrytij na osnove intermetallida sistemy Ti-Al. Uprochnyayushchie tekhnologii i pokrytiya. 2014. № 6. S. 7–10.
  39. Vakuumnaya opytno-promyshlennaya ustanovka naneseniya «ionnyh» pokrytij UNICOAT-600. Pasport. Dzerzhinsk: NPF «Elan-Praktik», 2006. 8 s. http://www.elanpraktik.ru/wp-content/uploads/2017/10/UniCoat-600-pasport.pdf
  40. Sagatelyan G.R., SHishlov A.V., SHashurin V.D. Nanesenie funkcional'nyh metallicheskih tonkoplenochnyh pokrytij na otvetstvennye detali giroskopicheskih priborov kosmicheskogo naznacheniya. Nanotekhnologii: razrabotka, primenenie – XXI vek. 2016. T. 8. № 3. S. 32–38.
  41. Bugorkov K.N., Sagatelyan G.R. Plazmohimicheskoe travlenie stekla s primeneniem vysokochastotnoj diodnoj sistemy. Estestvennye i tekhnicheskie nauki. 2017. № 8 (110). S. 87–91.
  42. Bugorkov K.N., Sagatelyan G.R. Vozmozhnosti plazmohimicheskogo travleniya stekla po diodnoj skheme. Mashinostroenie i komp'yuternye tekhnologii. 2017. № 11. S. 44–63.
  43. Odinokov S., Sagatelyan G., Bugorkov K., Drozdova E. Zakonomernosti i osobennosti dvuhstoronnego plazmohimicheskogo travleniya detalej iz opticheskogo stekla. Nanoindustriya. 2018. № 1. S 50–62. 
  44. Andreev V.G., Angeluc A.A., Vdovin V.A., Lukichev V.F., SHkurinov A.P. Osobennosti elektricheskoj provodimosti plenok hroma nanometrovoj tolshchiny. Radiotekhnika i elektronika. 2016. T. 61. № 1. S. 66–71. 
  45. Mansurov G.N., Petrij O.A. Elektrohimiya tonkih metallicheskih plenok: Monografiya. M.: MGOU. 2011. S. 97–106.
  46. Gofman U., Ryudorf V., Haas A., SHenk P. V., Guber F., SHmajser M., Baudler M., Bekher H.-J., Denges E., SHmidbaur H., Erlih P., Zajfert H.I. Rukovodstvo po neorganicheskomu sintezu: V 6-ti tomah. T.3: Per. s. nem.. Pod red. G. Brauera. M.: Mir. 1985. S. 727–728. 
  47. Herbstein F.H., Kapon M., Reisner G.M. Crystal structures of chromium (III) fluoride trihydrate and chromium (III) fluoride pentahydrate. Structural chemistry of hydrated transition metal fluorides. Thermal decomposition of chromium (III) fluoride nonhydrate. Z. für Kristallographie. 1985. Bd. 171.  № 1–4. P. 209–224. DOI: 10.1524/zkri.1985.171.14.209.
  48. Landau L.D., Lifshic E.M. Teoriya polya. M.: Nauka. 1988. 512 s.
  49. Sivuhin D.V. Obshchij kurs fiziki. Izd. 4-e, ster. M.: Fizmatlit; Izd-vo MFTI. 2004. T. III. Elektrichestvo. 656 s.
  50. Sadiku M.N.O. Elements of Electromagnetics. Fourth. New York (USA). Oxford (UK): Oxford University Press. 2007. P. 386.
Date of receipt: 12 января 2020 г.