350 rub
Journal Nanotechnology : the development , application - XXI Century №1 for 2017 г.
Article in number:
The effect of heat treatment on the structure and characteristics of field emission cathodes on a layered structures of titanium nitride and carbon nanowalls
Authors:
A.F. Belyanin - Dr.Sc. (Eng.), Chief Research Scientist, CRTI «Technomash» (Moscow) E-mail: belyanin@cnititm.ru V.V. Borisov - Leading Programmer, Skobeltsyn Institute of Nuclear Physics of Lomonosov Moscow State University N.I. Sushentsov - Ph.D. (Eng.), Head of Department, Volga State University of Technology (Yoshkar-Ola) S.A. Stepanov - Assistant, Volga State University of Technology (Yoshkar-Ola) D.E. Shashin - Post-graduate Student, Volga State University of Technology (Yoshkar-Ola)
Abstract:
The layered structures were formed and investigated on the Si substrates from nanostructured films of TiN, as well as the carbon na-nowalls (CNW), which are promising for the creation of field-emission cathodes. CNW formed from a gas phase hydrogen and methane activated by a DC glow discharge. Films of TiN formed by arc discharge and magnetron sputtering. The composition and structure of the CNW and films of TiN studied with electron microscopy and Raman spectroscopy. It is shown that represent the CNW porous material composed of a curved plate (scaly) forms carbon material crystallites 3-10 nm thick. The emission properties of layered structures Si/TiN/CNW, Si/C/TiN, and the dependence of these properties on thickness and structure of the of TiN deposited, were investigated. The effect of heat treatment and laser irradiation in air and in atmosphear of H2 and N2 to the structure of the CNW and layered structures CNW/TiN and the current-voltage characteristics of field-emission cathodes made by the CNW.
Pages: 4-11
References

 

  1. Collins J.L. Diamond-like carbon (DLC) ? a review // Industrial diamond review. 1998. V. 58. № 578. P. 90-92.
  2. Wang H-X., Jiang N., Zhang H., Hiraki A. Growth of a three dimensional complex carbon nanoneedle electron emitter for fabrication of fieldem ission device // Carbon. 2010. V. 48. P. 4483-4488.
  3. Tzeng Y., Chen C-L., Chen Y-Y., Liu C-Y. Carbon nanowalls on graphite for cold cathode applications // Diamond and Related Materials. 2010. V. 19 (2-3). P. 201-204.
  4. Beljanin A.F., Samojjlovich M.I., Borisov V.V., Evlashin S.A. Issledovanie mnogofaznykh uglerodnykh plenok avtoehmissionnykh katodov metodami ehlektronnojj mikroskopii, kombinacionnogo rassejanija sveta i rentgenovskojj difraktometrii // Nano- i mikrosistemnaja tekhnika. 2014. № 2. S. 20-25.
  5. Beljanin A.F., Borisov V.V., Evlashin S.A., Samojjlovich M.I. Vlijanie termoobrabotki uglerodnykh plenok na kharakteristiki avtoehmissionnykh katodov na ikh osnove // Nano- i mikrosistemnaja tekhnika. 2014. № 8. S. 20-27.
  6. Beljanin A.F., Samojjlovich M.I., Borisov V.V., Sushencov N.I., Timofeev M.A., Pilevskijj A.A., Beljaev O.A. Nenakalivaemye katody na sloistykh strukturakh nitridov i uglerodnykh materialov // Nano- i mikrosistemnaja tekhnika. 2015. № 7. S. 48-60.
  7. Tzeng Y., Chen W.L., Wu C., Lo J-Y., Li C-Y. The synthesis of graphene nanowalls on a diamond film on a silicon substrate by direct-current plasma chemical vapor deposition // Carbon. 2013. V. 53. P. 120-129.
  8. Cheng C.C., Liang X.T., Tse W.S., Chen I.Y., Duh J.G. Raman spectra of titanium nitride thin films // Chinese Journal of Physics. 1994. V. 32, № 2. P. 205-210.
  9. Ferrari A.C., Meyer J.C., Scardaci V., Casiraghi C., Lazzeri M., Mauri F., Piscanec S., Jiang D., Novoselov K.S., Roth S., Geim A.K. Raman spectrum of graphene and graphene layers // Physical review letters. 2006. V. 97. 187401.
  10. Ferrari A.C. Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nanodiabatic effects // Solid state communications. 2007. V. 143. P. 47-57.
  11. Pimenta M.A., Dresselhaus G., Dresselhaus M.S., Cancado L.G., Jorio A., Saito R. Studying disorder in graphite-based systems by Raman spectroscopy // Physical chemistry chemical physics. 2007. V. 9. P. 1276-1291.
  12. Hardcastle F.D. Raman spectroscopy of titania (TiO2) nanotubular water-splitting catalysts // Journal of the Arkansas academy of science. 2011. V. 65. P. 43-48.