350 rub
Journal Nanotechnology : the development , application - XXI Century №4 for 2016 г.
Article in number:
Technologies of photopolymerization at production of TEU
Authors:
A.A. Kondrashin - Ph.D. (Eng.), Professor, Moscow Aviation Institute (National Research University) E-mail: condrashin@rambler.ru A.N. Lyamin - Ph.D. (Eng.), Associate Professor, Moscow Aviation Institute (National Research University) V.V. Sleptsov - Dr.Sc. (Eng.), Professor, Moscow Aviation Institute (National Research University)
Abstract:
Now there is real «boom» of introduction of the 3D technologies of the press for production of products telecommunication, automobile, medical, etc. branches of a national economy. All known 3D technologies of the press, it is possible to divide on ways of receiving and processing of materials into two types of technologies: thermal impact on constructional material to and in the course of formation of a layer of the made detail (with the subsequent transfer of fusion) and technologies of photopolymerization. It is revealed that the main shortcomings of technologies of thermal influence are: low permission of the received images and low growth rates of products. In this article photopolymerization technologies which are partially deprived of above-mentioned shortcomings are considered, and can be applied to creation of TEU. The existing technologies of a fotopoimerization, consist in drawing on a surface of the formed detail of special photosensitive materials which, being polymerized, are cured layer-by-layer (integrally) or locally under the influence of a light stream of «flare» of a certain wavelength. Two main types of technologies of creation of 3D objects from photopolymeric compositions are considered: standard stereolithograph (an integrated flare) ? hardening of all already created photopolymer layer when using: LED DLP of a projector (FTI-technology (Film transfer imaging), the UF-laser (solid-state or CO2) (SLA technology (Steriolithography laser apparatus), technology of layer-by-layer consolidation (SGC  technology (Solid ground curing), technologies of cultivation of a monolith from solution (CLIP technology (Continuous liquid interface production) and local stereolithograph (a local flare), jet dispersion of photoplastic) with a simultaneous flare the UF-lamp (PJP technology (PolyJet printing). The comparative analysis of various photos of polymerization technologies of formation of TEU for the range of thickness of layers of the applied materials (X and Y on dpi) and on product growth rate (for the same type of polymer and construct of a detail) has shown to the maximum permission of images that the most perspective are technologies: CLIP, PJT, and FTI, other technologies: SGC and SLA, possess a number of essential shortcomings, and don\'t allow to receive products with the required quality of a surface or the required accuracy. It is also revealed that the main lack of modern photos of polymerization 3D-technologies for production of three-dimensional electronic devices is use as a substrate only of a product surface. Therefore now 4D the technology of formation of TEU similar to creation of multilayered printed circuit boards in microelectronics begins to develop.
Pages: 26-36
References

 

  1. Kondrashin A.A., Ljamin A.N., Slepcov V.V., Makhno D.V. Aspekty formirovanija trekhmernykh ehlektronnykh ustrojjstv // Nanoinzhenerija. 2015. № 2(44). S. 3-18.
  2. Kondrashin A.A., Ljamin A.N., Slepcov V.V., Makhno D.V. Additivnye trekhmernye ehlektronnye ustrojjstva // Nanoinzhenerija. 2015. № 7(49). S. 5-20.
  3. Dzhilpin C. 10 faktorov o 3D-pechati: ponjat novuju tekhnologiju, kotoraja v blizhajjshem budushhem kardinalno izmenit pravila igry // SADMASTER. 2014. № 3. S. 112-114.
  4. Filatkin V. Realizacija proizvodstva po individualnym zakazam s pomoshhju promyshlennykh printerov // Vektor vysokikh tekhnologijj. 2014. № 6(11). S. 8-12.
  5. Gibson JA., Rozen D., Staker B. Tekhnologii additivnogo proizvodstva. Trjokhmernaja pechat, bystroe prototipirovanie i prjamoe cifrovoe proizvodstvo / Per. s angl. I.V. SHishkovskijj. M.: Tekhnosfera. 2016. 656 s. (Mir stankostroenija).
  6. Opisanie tekhnologii DLP (FTI) // Sajjt 3D Systems. (http://www.3dsystems.com/kr/3d-media/3d-printing-process-fti).
  7. Tumbleston J.R., Shirvanyants D., Ermoshkin N. Additive manufacturing .Continuous liquid interface production of 3D objects // Science. 2015. V. 347. Is. 6228. R. 1349-1352.
  8. 3D Printing. CLIP Technology // Sajjt kompanii Carbon (http://carbon3d.com).
  9. Maksimov M.M. Clip - vyrashhivanie detalejj v objome // Ritm mashinostroenija. 2015. № 8. S. 26-35.
  10. Opisanie masochnojj stereolitografii SGA // Sajjt «3D TODAY» (http://3dtoday.ru/wiki/SGC_print).
  11. Opisanie tekhnologii Polyjet // Sajjt kompanii Objet (http://www.2objet.ru/tech/polyjet).
  12. 3D printery segodnja // Sajjt «3D TODAY» (http://3dtoday.ru/wiki/3dprint_basics).
  13. Obzor konsaltingo-analiticheskojj kompanii Wohlers // Report za 2013 (http://www.slideshare.net/alanek/wohlers-report-2013-executive-summary).
  14. Picasso 3D. Domashnie 3D printery // Sajjt kompanii proizvoditelja Picasso 3D (http://www.3d-format.ru/catalog/3dprin­ters/home/picaso-3d).
  15. Proizvodstvo rossijjskikh 3D printerov spotykaetsja o stereotipy // Sajjt «EHkspert on line» (http://expert.ru/2014/03/25 /proiz­vodstvo-rossijskih-3d-printe­rov-spotyikaetsya-o-stereotipyi).
  16. Rossijjskie uchenye sozdali pervuju v mire 3D-ruchku s kholodnymi chernilami // Nauchno-populjarnyjj portal «Naked-science» (http://naked-science.ru/article/hi-tech/the-world-s-first-3d-pen).
  17. Volova T.G. Materialy dlja mediciny, kletochnojj i tkanevojj inzhenerii / EHlektronnyjj uchebno-metodicheskijj kompleks / Sibirskijj Federalnyjj universitet. Krasnojarsk. 2009 (http://files.lib.sfu-kras.ru/ebibl/umkd/ 1324/u_manual.pdf).
  18. Pervyjj otechestvennyjj 3D-bioprinter pod nazvaniem FABION // Sajjt Akademii medicinskogo obrazovanija im. F.I. Ino­zemceva. Sankt-Peterburg. (http://academy-medical.ru/novosti-mediciny/printer-fabion.html).
  19. Pechat chelovecheskikh organov pri pomoshhi bioprintera // Sajjt kompanii «Materialise» (http://habrahabr.ru/compa­ny/materialise/blog/89748).
  20. Mirjalili R., Parviz B.A. Microlight-emitting diode with integrated Fresnel zone plate for contact lens embedded display // J. Micro/Nanolith. MEMS MOEMS. 2012. V. 11. № 3.