350 rub
Journal Nanotechnology : the development , application - XXI Century №4 for 2015 г.
Article in number:
Theoretical estimation of modern methods and ways of decrease in visibility of the objects and radar systems at electronic countermeasures
Authors:
R.P. Bystrov - Dr.Sc. (Eng.), Professor, Academician of the Academy of Military Sciences, Corresponding Member of the Academy of Engineering, Leading Research Scientist, V.A. Kotelnikov-s Institute of Radio Engineering and Electronics of RAS (Moscow). E-mail: rudolf@cplire.ru V.G. Dmitriev - Ph.D. (Eng.), Associate Professor, Leading Research Scientist, Institute of Geosphere Dynamics, Russian Academy of Sciences (Moscow). E-mail: w-dmitriev@yandex.ru V.L. Menshikov - Ph.D. (Eng.), Associate Professor, Department of Defense of Russian Federation Yu.M. Perunov - Dr.Sc. (Eng.), Professor, Academician of the Academy of Military Sciences, Chief Research Scientist, Institute of Geosphere Dynamics of RAS (Moscow). E-mail: w-dmitriev@yandex.ru A.A. Potapov - Dr.Sc. (Phys.-Math.), Professor, Member of Russian A.M. Prokhorov Academy of Engineering Sciences and Russian Academy of Natural Sciences, President of Cooperative Chinese-Russian Laboratory of Informational Technologies and Signals Fractal Processing (China, Guanzhou), Chief Research Scientist. V.A. Kotelnikov Intstitute of Radio Engineering and Electronics of RAS (Moscow). E-mail: potapov@cplire.ru
Abstract:
Now in scientific and technical sources it is shown that for the successful solution of problems of decrease in RLZ of objects of equipment and creation of new radar-tracking systems there is a need of carrying out the whole complex of theoretical and pilot studies. Therefore separate results of theoretical and pilot studies are also given in the real work according to modern methods and ways of decrease in a visibility of objects and radar-tracking systems in the conditions of radio-electronic counteraction. Justification of factors in a problem of ensuring reserve of work of RESI of decrease in a radar visibility (RLZ) of the land objects equipped with antenna systems for reduction of their radar detection and recognition in the conditions of modern radio-electronic fight is carried out. It is proved that a key to a radical solution of the problem of protection against active hindrances is the reserve of work of RLS which is offered to be provided with both passive and active methods. Thus methods of decrease in a radar visibility of antennas and ways of reserve of work of RLS locate. The following results of researches are given in the methodical plan for creation of a mathematical model of the directional patterns (DP) of radar-tracking systems: the majority of the DN types used in various radio-electronic means is classified; according to the carried-out classification each DN type with use of settlement and experimental DN of antennas is described; for each DN type it is developed, taking into account basic data, its model. the assessment of quality of model on extent of approach to reference DN of antennas of various classes and in sizes of errors of the characteristics of dispersion which are turning out thus is received. As now the carried-out studying of properties of the absorbing coverings and their application are equally actual for decrease in a radar visibility as at creation of objects of equipment, and constructive elements of systems of RLS and, first of all, scanners. Therefore in this work methods of application of the absorbing coverings for decrease in a radar visibility are also offered. It is shown that for creation of means of decrease in a radar visibility of locational objects the materials are required with wide range of electromagnetic characteristics (complex dielectric and magnetic for permeability). It is confirmed that widely applied resonator methods allow measuring both dielectric and magnetic permeability separately, however not in a continuous range of frequencies, but only at separate frequencies on which measuring resonators are adjusted. Certain forecasts allow us to make a conclusion that the results received in work in the short term nevertheless the multipurpose camouflage coverings working at the same time in radar, ultra-violet, optical and infrared wave bands will be created. On the basis of the carried-out analysis of methods and ways of decrease in a visibility of objects and radar-tracking systems decrease in a visibility of objects, and also the general tasks, ways of their decision, the NIR possible directions on prospect and the expected results on questions of decrease in a radar visibility of objects of a location are formulated to the directions of a solution.
Pages: 3-24
References

 

  1. Bortovye radiolokacionnye stancii voennojj aviacii zarubezhnykh stran. (Analiticheskijj obzor po materialam otkrytojj pechati) / Pod red. V.S. Verby i S.V. JAgolnikova. 2 CNII MO RF. 2005. 310 s.
  2. Kanashhenkov A.I., Merkulov V.I., Samarin O.F. Oblik perspektivnykh bortovykh radiolokacionnykh sistem. Vozmozhnosti i ogranichenija. M.: IPRZHR. 2002.
  3. Potapov A.A. Fraktaly i khaos kak osnova novykh proryvnykh tekhnologijj v sovremennykh radiosistemakh. Dopolnenie k kn.: Kronover R.Fraktaly i khaos v dinamicheskikh sistemakh: per. s angl. / pod red. T.EH. Krenkelja. M.: Tekhnosfera. 2006. S. 374-479.
  4. Sedojj I. Ispytanija RLS ASTOR na britanskom samolete // Zarubezhnoe voennoe obozrenie. 2006. № 2. S. 36.
  5. Sokolov A. Voenno-vozdushnye sily Korolevstva Saudovskaja Aravija // Zarubezhnoe voennoe obozrenie. 2006. № 4. S. 38-46.
  6. Popov A., Fedutinov D. Tendencii razvitija sistem peredachi dannykh pri ispolzovanii BLA // Zarubezhnoe voennoe obozrenie. 2006. № 4. S. 47-51.
  7. Rjurikov D., Vasilev A. Primenenie bespilotnykh letatelnykh apparatov i sistem v VMS SSHA // Zarubezhnoe voennoe obozrenie. 2006. № 4. S. 53-63.
  8. Voronikhin E., Kashin V., JAblonskijj D. Geoinformacionnoe obespechenie vooruzhennykh sil SSHA // Zarubezhnoe voennoe obozrenie. 2005. № 10. S. 6-15.
  9. Zajac V. Primenenie aviacii SSHA na aktivnojj faze operacii v Irake // Zarubezhnoe voennoe obozrenie. 2005. № 10. S. 37-44.
  10. Evgrafov V. Perspektivy sozdanija novykh vozdushnykh platform REHB VVS SSHA // Zarubezhnoe voennoe obozrenie. 2005. № 10. S. 45-53.
  11. Menshikov V.L. Metodika rascheta otrazhajushhikh svojjstv antenn dlja ocenki pomekhozashhishhennosti radiotekhnicheskikh sistem. TAII: diss. - kand. tekhn. nauk. 2006.
  12. Menshikov V.L., Karabanov R.M., Antonov K.A., Ankudinov K.A. Povyshenie pomekhozashhishhennosti RLS na osnove mezhpachechnogo kogerentnogo nakoplenija s adaptivnojj mezhpachechnojj amplitudno-fazovojj demoduljaciejj // Sb. nauch. trudov TAII. 2006.
  13. Menshikov V.L., Antonov K.A., Posokhov A. Sushkov A.V. Ocenka zashhishhennosti RLS ot maskirujushhikh pomekh na osnove obobshhennogo pokazatelja // Sb. nauch. trudov TAII. 2006.
  14. Noskov V.V., Menshikov V.L., Sushkov A.V. Metodika rascheta minimalno vozmozhnykh kharakteristik rassejanija antenn tipa «Volnovojj kanal» // Mezhvuzovskijj sb. trudov NTO REHS im. Popova. Tula: Tulgu. 2006.
  15. Emeljanov A., Smirnov, Maslennikova ZH.L., Menshikov V.L. Model seti RLS, obrazujushhejj izmeritelnyjj kompleks // Izvestija Tulskogo GU. Ser. «Radiotekhnika i radiooptika». 2005.
  16. Radioehlektronnye sistemy. Osnovy postroenija i teorija. Spravochnik / pod red. JA.D. SHirmana. M.: ZAO «Makvis». 1998. 826 s.
  17. Spravochnik po radiolokacii. V 2-kh knigakh / pod red. M. Skolnika / per. s angl. pod obshh. red. d.t.n., prof. V.S. VerbyM.: Tekhnosfera. 2014.
  18. Lagarkov A.N., Sarychev A.K. // Phys. Rev. B. 1996. V. 53. № 10. R. 6318.
  19. Shevchenko V.G., Ponomarenko A.T., Klason C., Tchmutin I.A., Ryvkina N.G. // J. Electromagnetics. 1997. V. 17. № 2. R. 157-170.
  20. Ponomarenko V.I., Berzhanskijj V.N., Mirovickijj D.I. // REH. 1989. T. 34. № 8. S. 67.
  21. Kazantsev N. E., Ponomarenko A. T., Shevchenko V. G., Klason C. // Electromagnetics. 2000. V. 20. № 4. R. 139.
  22. Kazantsev N.E., Ponomarenko A.T., Kalinin Yu.E., Sitnikov A.V., et al. // Extended Abstracts of Euro-Fillers\'01 Conference. 2001. R. 200.
  23. Lucev L.V., JAkovlev S.V., Siklickijj V.I. // FTT. 2000. T. 42. Vyp. 6. S. 1105.
  24. Chacravarty S., Mittra R., Williams N.R. Application of a microgenetic algorithm (MGA) to the design of broad-band microwave absorbers using multiple frequency selective surface screens buried in dielectrics // IEEE Trans. Antennas Propagat. 2002. V.50.  № 3. P. 284.
  25. Kazantsev Y.N., Mal\'tsev V.P., Shatrov A.D.Plane wave transmission through a pair of capacitive gratings // IEE Proc. Microw. AntennasPropagation. 2000. V. 147. № 6. P. 455.
  26. Mikhajjlovskijj L.K. Logika postroenija i osnovnye polozhenija matematicheskogo formalizma kvantovojj girovektornojj ehlektrodinamiki (giromodel) // Materialy XII Mezhdunar. konf. po spinovojj ehlektronike i girovektornojj ehlektrodinamike. 19-21 dekabrja 2003 g. Moskva (Firsanovka). S. 70-89.
  27. Mikhajjlovskijj L.K. Analiz polja poverkhnostnykh voln v prisutstvii konechnogo chisla parallelnykh metallicheskikh polosok na poverkhnosti pezoehlektrika // Materialy XII Mezhdunar. konf. po spinovojj ehlektronike i girovektornojj ehlektrodinamike. 19-21 dekabrja 2003 g. Moskva (Firsanovka). S. 102-109.
  28. Mikhajjlovskijj L.K. Bestokovoe i besfaznoe «tochechnoe» ehnergeticheskoe vzaimodejjstvie ehlektromagnitnogo polja s sobstvennym dinamicheskim polem spinovykh centrov pogloshhenija-izluchenija giromagnitnojj sredy // Materialy XII Mezhdunar. konf. po spinovojj ehlektronike i girovektornojj ehlektrodinamike. 19-21 dekabrja 2003 g. Moskva (Firsanovka). S. 129-134.
  29. Mikhajjlovskijj L.K. Bestokovaja radioehlektronika (kvantovaja mekhanika dlja inzhenerov) // XII Mezhdunar. konf. po spinovojj ehlektronike i girovektornojj ehlektrodinamike. 19-21 dekabrja 2003 g. Moskva (Firsanovka). S. 39-68.
  30. Apletalin V.N., Zubov A.S., Kazancev JU.N., Solosin V.S. Poljarizacionnyjj reflektometr // Radiotekhnika. 1998. T. 43. № 12. S. 4-10.