350 rub
Journal Nanotechnology : the development , application - XXI Century №3 for 2015 г.
Article in number:
Acousto-optic cell based on silica and tellurium alloy
Authors:
V.B. Voloshinov - Ph. D. (Phys.-Math.), Associate Professor, Department of oscillation physics , Faculty of Physics, Lomonosov Moscow State University. E-mail: volosh@phys.msu.ru L.A. Kulakova - Dr. Sc. (Phys.-Math.), Professor, Ioffe Physical-Technical Institute (St Petersburg). E-mail: L.Kulakova@mail.ioffe.ru N. Gupta - Ph. D., Head of Acousto-optics Laboratory, U.S.Army Research Laboratory (Adelphi). E-mail: neelam.gupta.civ@mail.mil V.S. Khorkin - Student, Department of oscillation physics , Faculty of Physics, Lomonosov Moscow State University. E-mail: vld_510@mail.ru G.A. Knyazev - Ph. D. (Phys.-Math.), Associate Professor, Department of photonics and microwave physics, Faculty of Physics, Lomonosov Moscow State University. E-mail: g_knyazev@mail.ru
Abstract:
We investigated optical glasses composed of tellurium, germanium, selenium and silicon. These glasses are promising for applications in acousto-optic instruments. The alloys are transparent in the range of wavelengths starting from λ = 1.5 μm and extending to λ = 20 μm. In this paper, we describe optical properties of these glasses such as the refractive index and the photoelastic coefficients. We also discuss data on magnitudes of acousto-optic figure of merit. Possibilities of application of the glasses in instruments of electromagnetic radiation control in near, middle and long infrared regions of spectrum are considered in the presentation. Technical characteristics of acousto-optic cell fabricated on base of the tellurium glass Si20Te80 operating at the wavelength of radiation 3.39 microns are presented in the final part of this paper.
Pages: 42-48
References

 

  1. Balakshijj V.I., Parygin V.N., CHirkov L.E. Fizicheskie osnovy akustooptiki. M.: Radio i svjaz. 1985.
  2. Xu J., Stroud R. Acousto-Optic Devices. NewYork: Wiley. 1992.
  3. Yariv A., Yeh P. Optical Waves in Crystals. NewYork: Wiley. 1982.
  4. Fox A.J. Acoustooptic figure of merit for single crystal germanium at 10.6 μm wavelength // Appl. Opt. 1985. V. 24. № 12. P. 2040−2041.
  5. Suhre D., Villa E. Imaging spectroradiometer for the 8‑12 μm region with 3−1 passband acousto-optic tunable filter // Appl. Opt. 1998. V. 37. P. 2340−2345.
  6. Singh N.B., Suhre D., Gupta N., Rosch W.Gottlieb M., Performance of TAS crystal for AOTF imaging // J. Cryst. Growth. 2001. V. 225. P. 124−128.
  7. Knuteson D.J., Singh N.B., Gottlieb M., Suhre D., Gupta N. Crystal growth, fabrication and design of mercurous bromide acousto-optic tunable filters // Opt. Eng. 2007. V. 46. P. 064001−064010.
  8. Kim J., Trivedi S.B., Soos J., Gupta N., Palosz W. Growth of Hg2Cl2and Hg2Br2 single crystals by physical vapor transport // J. Cryst. Growth. 2008. V. 310. P. 2457−2463.
  9. Voloshinov V.B., Balakshy V.I., Kulakova L.A., Gupta N. Acousto-optic properties of tellurium that are useful in anisotropic diffraction // J. Opt. A: PureAppl. Opt. 2008. V. 10. P. 095002−095010.
  10. Voloshinov V.B., Balakshijj V.I., Kulakova L.A., Knjazev G.A. Issledovanie akustoopticheskikh svojjstv kristallov tellura v rezhime anizotropnojj difrakcii sveta // ZHTF. 2008. T. 105. № 10. S. 118−125.
  11. Voloshinov V.B., Gupta N., Knyazev G.A., Polikarpova N.V. An acousto-optic X−Y deflector based on close-to-axis propagation of light in the single crystal tellurium // J. Opt. 2011. V. 13. P. 015706−015713.
  12. Gupta N., Voloshinov V.B., Knyazev G.A., Kulakova L.A. Tunable wide angle acousto-optic filter applying single crystal tellurium // Journal of Optics. 2011. V. 14. P. 035502−035511.
  13. Akusticheskie kristally. Spravochnik / Pod red. M.P. SHaskolskojj. M.: Nauka. 1982.
  14. Kulakova L.A., Melekh B.T., Bakharev V.I., Kudojarova V. Sintez i fizicheskie svojjstva Si(Ge)-Se-Te stekol // Fizika i tekhnika poluprovodnikov. 2003. T. 37. № 7. S. 822−826.
  15. Grudinkin S.A., Bakharev V.I., Egorov V.M., Melekh B.T., Golubev V.G. Kristallizacionnaja sposobnost, opticheskie i ehlektricheskie svojjstva khalkogenidnykh stekloobraznykh poluprovodnikov Ge10 (Se−Te)90 i Ge30 (Se−Te)70 // Fizika i tekhnika poluprovodnikov. 2011. T. 45. № 11. S. 1520−1525.
  16. Kulakova L.A., Melekh B.T., Grudinkin S.A., Danilov A.P.Ge−Se−Te- i Ge−Te−Se−S‑splavy - novye materialy dlja akustoopticheskikh ustrojjstv blizhnego, srednego i dalnego infrakrasnykh diapazonov // Fizika i tekhnika poluprovodnikov. 2013. T. 47. № 10. S. 1435−1439.