350 rub
Journal Nanotechnology : the development , application - XXI Century №3 for 2015 г.
Article in number:
Promising for emission electronics the composite material based on nanotubes and graphite
Authors:
O.E. Glukhova - Dr. Sc. (Phys.-Math.), Head of Department «Radioengineering and Electrodynamics», Saratov State University named after N.G. Chernyshevsky. E-mail: glukhovaOE@info.sgu.ru A.S. Kolesnikova - Ph. D. (Phys.-Math.), Assistant, Department «Radioengineering and Electrodynamics», Saratov State University named after N.G. Chernyshevsky. E-mail: kolesnikova.88@mail.ru M.M. Slepchenkov - Ph. D. (Phys.-Math.), Assistant, Department «Radioengineering and Electrodynamics», Saratov State University named after N.G. Chernyshevsky. E-mail: slepchenkovm@mail.ru G.V. Savostianov - Programmer, Department of Mathematic Modeling, Saratov State University named after N.G. Chernyshevsky. E-mail: follow.a.white.rabbbitt@gmail.com D.S. Shmygin - Programmer, Department of Mathematic Modeling, Saratov State University named after N.G. Cher-nyshevsky. E-mail: shmygin.dmitriy@gmail.com
Abstract:
In this paper, we present the results of predictive modeling of composites with optimal geometrical parameters for later of their use as the element base of electronic devices. Geometric parameters of the composite are the length and diameter of the nanotubes, as well as the distance between the nanotubes in the composite. Identification of the optimal configuration of the composites was carried out so that the stability and the work function of the composites were increased. It was found that a high emissivity and energy sustainability will have a nanocomposite «CNT-graphene» in which a carbon nanotube has a diameter of 0.5 nm and a length of 0.7 nm at a fixed distance between the nanotubes 3.7 nm. There are now successful synthesis technology composites «CNT-graphene». Therefore we can assume that composites presented in this paper will be a good analogue conventional carbon nanotubes traditionally used in the electronics emission during the creation of a new generation matrix cathodes. Search the equilibrium configuration of composites was carried out by molecular mechanical model with the potential REBO using the software package KVAZAR. Calculation of ionization potential of the composites was performed by tight-binding quantum-chemical method. Calculation of electric field amplification factor for the equilibrium configuration of the composite is carried out by finite element software package ANSYS.
Pages: 35-41
References

 

  1. Fursey G.N. Field emission in vacuum microelectronics. N Y: Kluwer Academic, Plenum Publishers. NewYork. 2005. 205 p.
  2. Guljaev JU.V., Sinicyn N.I., Torgashov G.V. Avtoehlektronnaja ehmissija s uglerodnykh nanotrubnykh i nanoklasternykh plenok // Radiotekhnika i ehlektronika. 2003. T. 48. № 11. S. 1399−1406.
  3. Chernozatonskii L.A., Gulyaev Yu.V., Kosakouskaya Z.Ya., Sinitsyn N.I., Torgashov G.V., Zakharchenko Yu.F., Fedorov E.A., Val\'chuk V.P.ElectronFieldEmissionfromNanofilamentCarbonFilms // Chem. Phys. Lett. 1995. V. 233. P. 63.
  4. Shesterkin V.I., Glukhova O.E., Ivanov D.V., Kolesnikova A.S. Computational and Experimental Estimation of the Autoelectron Energy Spectrum for Multiple Tip Cathode Matrix Made of Glassy Carbon // Journal of Communications Technology and Electronics. 2014. V. 59. № 8. P. 827−832.
  5. Rizler A.G., Hafner J.H., Nikolaev P., Nordlander P., Lou L., Kim S.G., Tomanek D., Nordlander P., Colbert D.T., Smalley R.E. Unraveling Nanotubes: Field Emission from an Atomic Wire // Science. 1995. V. 269. P. 1550−1553.
  6. Wu Y., Zhang T., Zhang F., Wang Y., Ma Y., Huang Y., Liu Y., Chen Y. In Situ Synthesis of Graphene/Single-Walled Carbon Nanotube Hybrid Material by Arc-Discharge and its Aplication in Supercapacitors // Nano Energy. 2012. V. 1. P. 820−827.
  7. Kondo D., Sato S., Awano Y. Self-Organization of Novel Carbon Composite Structure: Graphene Multi-Layers Combined Perpendicularly with Aligned Carbon Nanotubes // Applied Physics Express. 2008. V. 1. P. 074003.
  8. Seo S.D., Hwang I.S., Lee S.H., Shim H.W., Kim D.-W. 1D/2D Carbon Nanotube/Graphene Nanosheet Composite Anodes Fabricated Using Electrophoretic Assembly // Ceramics International. 2012. V. 38. P. 3017−3021.
  9. Zhu Y., Li L., Zhang C., Casillas G., Sun Z., Yan Z., Ruan G., Peng Z., Raji A.R.O., Kittrell C., Hauge R.H., Tour J.M., A Seamless Three-Dimensional Carbon Nanotube Graphene Hybrid Material // Nature Communications. 2012. V. 3. P. 1−7.
  10. Gong J., Yang P. Investigation on Field Emission Properties of Graphene-Carbon Nanotube Composites // RSC Adv. 2014. V. 4. P. 19622−19628.
  11. Deng J.H., Wang F.J., Cheng L., Yu B., Li G.-Z., Hou X.-G., Li D.-J., Cheng G.-A. Improved Field Emission of Few-Layer Graphene-Carbon Nanotube Composites by High-Temperature Processing // Materials Letters. 2014. V. 124. P. 15−17.
  12. Varshney V., Patnaik S.S., Roy A.K., Froudakis G., Farmer B.L. Modeling of Thermal Transport in Pillared-Graphene Architectures // ACS Nano. 2010. V. 4. № 2. P. 1153−1161.
  13. Pop E., Varshney V., Roy A.K. Thermal Properties of Graphene: Fundamentals and Applications// Materials Research Society. 2012. V. 37. P. 1273.
  14. Gong J., Yang P. Investigation on Field Emission Properties of Graphene-Carbon Nanotube Composites // RSC Adv. 2014. V. 4. P. 19622.
  15. CHernozatonskijj L.A., SHeka E.F., Artjukh A.A. Grafen-nanotrubnye struktury: stroenie i ehnergetika obrazovanija // Pisma v ZHEHTF. 2009. T. 89. S. 412−417.
  16. Glukhova O.E., Savostjanov G.V.,Safonov R.A. Mnogoprocessornyjj programmno-informacionnyjj kompleks modelirovanija molekuljarnykh sistem dlja super-EHVM «KVAZAR» // Svidetelstvo o gosudarstvennojj registracii programmy dlja EHVM № 2014610217.
  17. Brenner D.W. Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films // Phys. Rev. B. 1990. V. 42. № 15. P. 9458−9471.
  18. Khodakarami A., Pedramrazi S.M., Farahani H.F. Analysis of Auxiliary Winding Effect on the Leakage Inductance Reduction in the Pulse Transformer Using ANSYS // J. Electromagnetic Analysis & Applications. 2010. V. 2. P. 513−518.
  19. Saito R., Dresselhaus G., Dresselhaus M.S. Physical Properties of Carbon Nanotubes. London: WorldScientiécPubl. 1998. P. 259.
  20. Kosevich A.M. The Crystal Lattice: Phonons, Solitons, Dislocations, Superlattices Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA. 2005. P. 345.
  21. Zagpadnik P., Polak P. Osnovy kvantovojj khimii. M.: Mip. 1979. 504 s.
  22. Glukhova O.E. Teoreticheskijj analiz stroenija i fizicheskikh svojjstv uglerodnykh nanoklasterov s pozicijj razrabotki na ikh osnove nanoustrojjstv razlichnogo naznachenija. Dis. - dokt. fiz.-mat. nauk. Saratov - 2009. 512 s.
  23. Zhao J., Han J., Lu J.P. Work Functions of Pristine and Alkali-Metal Intercalated Carbon Nanotubes and Bundles // Physical Review B. 2002. V. 65. P. 193401(4).
  24. Dannenmayer K., Kudrna P., Tichy M., Mazouffre S. Measurement of Plasma Parameters in the Far-Field Plume of a Hall Effect Thruster // Plasma Sources Sci. Technol. 2011. V. 20. P. 065012 (9).