350 rub
Journal Nanotechnology : the development , application - XXI Century №3 for 2015 г.
Article in number:
«Real» insulating properties of an ultrathin silicon oxide
Authors:
E.I. Gol\'dman - Ph. D. (Phys.-Math.), Leading Research Scientist, Kotel\'nikov FIRE of RAS (Fryazino). E-mail: gvc@ms.ire.rssi.ru Yu.V. Gulyaev - Academic of RAS, Scientific Adviser, Kotel\'nikov IRE of RAS (Moscow). E-mail: gulyaev@cplire.ru G.V. Chucheva - Dr. Sc. (Phys.-Math.), Scientific Secretary, Kotel\'nikov FIRE of RAS (Fryazino). E-mail: gvc@ms.ire.rssi.ru
Abstract:
The analyze of real insulating properties of an ultrathin silicon oxide is submitted based on results previously obtained by authors concerning structures n+ Si-SiO2-n Si with a oxide thickness of 37 Å. It is shown, that the potential relief in an ultrathin SiO2 is not described by a rectangular model. It is characterized by relatively thick, ~10 Å, layers with a reduced value of the potential, separating Si from the actual barriers to electron tunneling. It is noted, that the effective barrier height of ultrathin insulating SiO2 layers is much smaller, and tunneling electron mass is much larger than, that by bulk dielectrics. It is indicated, that structures of the metal-oxide semiconductor with an ultrathin oxide are much more «malleable» field and thermal stresses compared to samples with a thick insulating layer: objects with an ultrathin oxide easily are damaged by external influences, but quickly restored to its original state at the room temperature.
Pages: 3-10
References

 

  1. Baraban A.P., Bulavinov V.V., Konorov P.P. EHlektronika sloev na kremnii. L.: 1988. 303 s.
  2. Goldman E.I., Kukharskaya N.F., Zhdan A.G. The effect of imaging forces in ultra thin gate insulator on the tunneling current and its oscillations at the region of transition from the direct tunneling to the Fowler-Nordheim tunneling // Solid-State Electronics. 2004.V. 48. P. 831.
  3. Goldman E.I., ZHdan A.G., Kukharskaja N.F., CHernjaev M.V. Vosstanovlenie profilja potenciala v izolirujushhem sloe po voltampernym kharakteristikam tunnelnykh MDP-diodov // FTP. 2008. T. 42. № 1. S. 94.
  4. Goldman E.I., Guljaev JU.V., ZHdan A.G., CHucheva G.V. Prjamoe tunnelirovanie ehlektronov v strukturakh Al−n+‑Si−SiO2−n‑Si v rezhime nestacionarnogo obednenija poverkhnosti poluprovodnika osnovnymi nositeljami zarjada // FTP. 2010. T. 44. № 8. S. 1050.
  5. Gricenko V.A. Struktura granic razdela kremnijj/oksid i nitrid/oksid // UFN. 2009. T. 179. № 9. S. 921.
  6. Reed M.L. Models of Si−SiO2 interface reactions // Semicond. Sci. Technol. 1989. V. 4. № 12. P. 980.
  7. Durr M., Hu Z., Biedermann A., Hofer U., Heinz T.F. Real-space investigation of hydrogen dissociation at step sites of vicinal Si(001) surfaces // Phys. Rev. 993. V. 63. № 12. 121315 (R). P. 1.
  8. Stathis J.H., Buchanan D.A., Quinlan D.L., Parsons A.H. Interface defects of ultrathin rapid-thermal oxide on silicon // Appl. Phys. Lett. 1993. V. 62. № 21. P. 2682.
  9. Cellere G., Gerardin S., Paccagnella Al. DefectsinThinandUltrathinSiliconDioxides // DefectsinMicroelectronicMaterialsandDevices. Chapter 17. Edited by Fleetwood D.M., Pantelides S.T.andSchrimpf R.D. CRC Press. 2008. P. 497.
  10. Komiya K., Omura Y. Spectroscopic characterization of stress-induced leakage current in sub 5‑nm-thick silicon oxide film // Journ. Appl. Phys. 2002. V. 92. № 5. P. 2593.
  11. Goldman E.I., Kukharskaja N.F., Naryshkina V.G., CHucheva G.V. Projavlenie izbytochnykh centrov rozhdenija ehlektronno-dyrochnykh par, voznikshikh v rezultate polevogo i termicheskogo stressov i ikh posledujushhejj annigiljacii, v dinamicheskikh volt-ampernykh kharakteristikakh Si‑MOP struktur so sverkhtonkim okislom // FTP. 2011. T. 45. № 7. S. 974.
  12. Hadjadi A., Salace G., Petit C. Fowler-Nordheim conduction in polysilicon (n+‑Si)?oxide-silicon (p) structures: Limit of the classical treatment in the barrier height determination // Journ.Appl. Phys. 2001. V. 89. № 12. P. 7994.
  13. Rana F., Tiwari S., Buchanan D.A. Self-consistent modeling of accumulation layers and tunneling currents through very thin oxides // Appl.Phys.Lett. 1996. V. 69. № 8. P. 1104.
  14. ZHdan A.G., Kukharskaja N.F., Naryshkina V.G., CHucheva G.V.Rekonstrukcija zavisimostejj tunnelnogo toka ot naprjazhenija na okisle po dinamicheskim volt-ampernym kharakteristikam geterostruktur n+‑Si−SiO2−n‑Si // FTP. 2007. T. 41. № 9. S. 1135.
  15. Sze S.M., Kwok K.Ng. Physics of semiconductor devices. N.J. John Willey and Sons. Ins. 2007.
  16. Tikhonov A.N., Arsenin V.A. Metody reshenija nekorrektnykh zadach. M.: Nauka. 1986.
  17. Goldman E.I., Ivanov V.A. Adaptivnyjj tikhonovskijj algoritm postroenija proizvodnykh ehksperimentalnykh zavisimostejj // Preprint IREH RAN № 22(551). M. 1990.
  18. Goldman E.I., Kukharskaja N.F., Naryshkina V.G., CHucheva G.V.Opredelenie tempa termicheskojj generacii neosnovnykh nositelejj zarjada na granice razdela «poluprovodnik - sverkhtonkijj okisel» // Pribory i tekhnika ehksperimenta. 2011. № 6. S. 81.
  19. Bobrova E.A., Omeljanovskaja N.M. Osobennosti volt-faradnykh kharakteristik MOP struktur, obuslovlennye zarjadom v okisle // FTP. 2008.T. 42. № 11. S. 1380.
  20. Ma T.P. Interface traps transformation in radiation or hot-electron damaged MOS structures // Semicond. Sci. Technol. 1989. V. 4. № 12. P. 1061.