350 rub
Journal Nanotechnology : the development , application - XXI Century №1 for 2015 г.
Article in number:
Nano-effects in molecular hinges of ionic channels of neuronic cellular membrane and neurocomputing simulation of threshold waves nature
Authors:
A.V. Savelyev - Senior Research Scientist, Deputy Editor in Chiefof the Journal «Neurocomputers: development, application», «Radio Engineering» Publisher (Moscow). E-mail: gmkristo@yandex.ru
Abstract:
In this paper of the author\'s results of several years research on the detailed modeling of nano-processes of the nervous system at the cellular and molecular level is contained. It concerns of wave propagation of changes the excitability threshold of neuronal membranes in neural networks, and determine the nature of this phenomenon in nano-size level. An attempt is made to clarify some misunderstanding of relationships of space-time dynamics in spike propagation and the associated change in the threshold of the nerve fibers, as well as cause-effect relationships that. Characteristics connection of such a nature waves with ahead of the changes in the threshold of the next fiber, relative to the propagating spike is proven. The propagation of the threshold wave itself is a very remarkable phenomenon in neurons and may determine specific additional communication mechanism, no less important than the spike propagation of excitation, at the same time, directly associated with it. Difference between the open (MvAP) and closed KirBac1.1 (KcsA) potassium chan¬nel, which is the internal geometry of protein helices that form the lining of the pore are shown and simulated. M and S-helix in the case of lateral opening channel have a break, due to the fact that the nanostructural contain weakened middle section between two heavy duty C and N-terminal. Spiral fracture is localized in areas with glycine residues, as we know, highly conserved in potassium channels. They, just, and act as a flexible hinge due to increased conformational flexibility, providing a spiral fracture in these places. Activating force causes the slope of the outer spirals, and their interaction with internal coils, causing them to break. In potentsial-sensitive channel voltage-sensing S4 segment is adjacent to the outer helix S5, exercising its slope and, therefore, the subsequent break in the inner helix. In addition, the overall mobility of the hinge system of channels affected by changes in hydrophobicity protein, which has the character of a noise signal. In this case, the impact of passing electrical spike are determinative of the flexible hinge nanosystems behavior, blocking its stochastic fluctuations. Electrogenic and electro-efficiency threshold waves and their possible non-electromagnetic nature, namely, mechanical or mechanical and chemical is shown. Characteristics connection just such a nature waves ahead of the changes in the threshold of the next fiber, relative to the propagating spike is proved. Simulations showed the possibility of influences, and, cross-cutting nature, through the electromagnetic field of the propagating spike, which is powerful enough electrical artifact. In addition, these models can reproduce makro-effects of collective order are caused a collective nano-effects of change in the mobility of molecular nano-hinges of membrane channel proteins. Simulation results of neuronal membrane nano¬processes in the level of information macromodels are presented, the possibility of playing their mechanisms at the macro level and compatibility of nano- and neural information technology is shown.
Pages: 31-39
References

 

  1. Saveleva-Novosjolova N.A., Savelev A.V.Ustrojjstvo dlja modelirovanija nejjrona // Patent № 1436720. 1988.
  2. Mezheckaja T.A., Savelev A.V., Kolesnikov A.A. Ustrojjstvo dlja modelirovanija nervnogo puchka // Patent № 1439632. Bjulleten Izobretenijj. 1988. № 43.
  3. Savelev A.V. Obzor izobretenijj v oblasti nejjrokibernetiki i nejjromodelirovanija // Radioehlektronika. Infor­matika. Upravlenie, ZNTU. 2007. № 2(18). S. 101-111.
  4. Savelev A.V. Nejjroseti s polevymi vychislenijami. Bionejjrokiberneticheskie aspekty // Sb. «Nejjroinformatika-2009». MIFI. 2009. CH. I. S. 112-124.
  5. Savelev A.V. Nejjroseti s polevymi vychislenijami. Biokiberneticheskie aspekty // XVI Vseros. sem. «Nejjroin­formatika, ee prilozhenija i analiz dannykh». Krasnojarsk. IVM RAN. 2008.
  6. Mekhanizmy dejatelnosti mozga cheloveka. CH. I. Nejjrofiziologija cheloveka / Red. N.P. Bekhtereva. Leningrad: Nauka.1988. 677 s.
  7. http://www.medicinform.net/nevro/osteohond/index7.htm
  8. http://lib.e-science.ru/book/103/page/175.html ? Volkenshtejjn M.V. Obshhaja biofizika. S. 175.
  9. Savelev A.V. Nejjrologicheskie aspekty kletochnojj nejjromatematiki // Iskusstvennyjj intellekt. NAN Ukrainy. Doneck:2008. № 4. S.612-623.
  10. Biologicheskijj ehnciklopedicheskijj slovar. Gl. red. M.S. Giljarov. Redkol.: A.A. Babaev, G.G. Vinberg, G.A. Zavarzin i dr. Izd.2-e. M.: Sov. ehnciklopedija. 1986.
  11. JAvorskijj B.M., Detlaf A.A. Spravochnik po fizike dlja inzhenerov i studentov VUZov. M.: Nauka. 1968.
  12. Karlin A., Akabas M.H. Toward a structural basis for the function of nicotinic acetylcholine receptors and their cousins // Neuron. 1995. V. 15. № 6. P. 1231?1244.
  13. Fujiyoshi Y., Unwin N. Electron crystallography of proteins in membranes // Current Opinion in Structural Biology. 2008. V. 18. № 5. P. 587?592.
  14. White B.H., Cohen J.B. Agonist-induced changes in the structure of the acetylcholine receptor M2 regions revealed by photoincorporation of an uncharged nicotinic noncompetitive antagonist // Journal of Biological Chemistry. 1992. V. 267. P. 15770-15783.
  15. Labarca C., Nowak M.W., Zhang H., Tang L., Deshpande P., Lester H.A. Channel gating governed symmetrically by conserved leucine residues in the M2 domain of nicotinic receptors // Nature. 1995. V. 376. P. 514-516.
  16. Protein Data Bank http://www.wwpdb.org/
  17. Kagava JA. Biomembrany. M.: Vysshaja shkola. 1985.
  18. Jiang Q., Li M.-H., Papasian C.J., Branigan D., Xiong Z.-G., Wang J.Q., Chu X.-P. Characterization of acid-sensing ion channels in medium spiny neurons of mouse striatum // Neuroscience. 2009. V. 162. № 1. P. 55-66.
  19. Asheebo R., Jianping Wu, Runping W., Chun J. Gating of the ATP-sensitive K+ channel by a pore-lining phenylalanine residue // Biochimica et Biophysica Acta (BBA) Biomembranes. 2007. V. 1768. № 1. P. 39?51.
  20. Solomatin V.F. Model associativnojj pamjati s superpozicionnojj zapisju i razdelnym khraneniem associacijj // Nejjrokompjutery: razrabotka, primenenie.2012.№ 8. S. 35-39.
  21. Volkenshtejjn M.V. Biofizika. M.: Nauka. 1988. S. 366.
  22. Struktura i funkcii nerva. http://medicinform.net/nevro/osteohond/index7.htm
  23. Markin V.S., Pastushenko V.F., CHizmadzhev JU.A.Teorija vozbudimykh sred. M.: Nauka. 1981. C. 166.
  24. Katz B., Schmidtt O.H. Electric interaction between two adjacent nerve fibres // J. Physiology. 1940. V. 97. P. 471-488.
  25. Katz B., Schmidtt O.H. A note on interaction between nerve fibres // J. Physiology. 1942. V. 100. P. 369-371.
  26. Savelev A.V. Ontologicheskoe rasshirenie teorii funkcionalnykh sistem // ZHurnal problem ehvoljucii otkrytykh sistem. Kazakhstan, Almaty:2005. T. 7. № 1. S. 86-94.
  27. Kolushov V.V., Savelev A.V. Metodologija individualno-kollektivnogo modelirovanija nejjronnojj biovozbudimo­sti kak novaja nejjrokompjuternaja paradigma // Nejjrokompjutery: razrabotka, primenenie.2010.№ 8. C. 40-47.
  28. Savelev A.V. Novejjshaja ehkzistencialno-ehpistemologicheskaja metodologija starykh vychislitelnykh nejjroissledovanijj // Sb. VII Mezhdunar. mezhdisciplinarnogo kongressa «Nejjronauka dlja mediciny i psikhologii».Sudak, Krym, Ukraina. 2011.C. 366-368.
  29. Nejjrokompjutery i obshhestvo //Nejjrokompjutery: razrabotka, primenenie.2010.№ 8; http://www.radiotec.ru/ catalog.php-cat=jr7&itm=2010-8
  30. Kolesnikov A.A., ZHukov A.G., Saveleva-Novostlova N.A., Savelev A.V. Ustrojjstvo dlja modelirovanija nejjrona // Patent RF № 1425731. 1988. Bjull. № 35.
  31. Kolushov V.V., Savelev A.V. Novye 3D-informacionnye tekhnologii v animacionnom «ozhivlenii» kletochnojj biotkani na osnove kommunikativnojj socio-imitacionnojj metodologii // Nejjrokompjutery: razrabotka, prime­nenie. 2012. № 8.S. 18-25.
  32. Nejjrokompjutery i obshhestvo / Nejjrokompjutery: razrabotka, primenenie.2013.№ 7; http://www.radiotec.ru/ catalog.php-cat=jr7&itm=2013-7
  33. Savelev A.V. Nejjronanofizicheskaja priroda raspredelennogo molekuljarno-kletochnogo nanoakceptora rezultata dejjstvija - analiticheskoe nejjrokompjuternoe modelirovanie// Nejjrokompjutery: razrabotka, primenenie.2012.№ 6. C. 35-41; http://www.radiotec.ru/catalog.php-cat=jr7&art=12965