350 rub
Journal Nanotechnology : the development , application - XXI Century №4 for 2012 г.
Article in number:
Synthesis of carbon nanotubes by the continuous CVD method
Authors:
A.N. Danilin, S.M. Nikitin, L.N. Rabinsky, Yu.G. Yanovsky
Abstract:
This paper presents a comparative analysis of several modern technologies for the synthesis of carbon nanotubes (CNT). Catalytic Vapor Deposition method (CVD) is noted as the most cost-effective and promising in industrial development, which consists in the formation of CNT from the vapor by passing a carbonaceous material in the form of vapor over a heated catalyst. There is a number of disadvantages of this method, one of which is its periodicity (the inability to implement continuous process) and the inefficient consumption of carbon-containing raw materials and associated noble gases. The modified CVD method is suggested, which can significantly improve its efficiency and greater productivity in the process continuity.
Pages: 4-11
References
  1. Елецкий А.В. Углеродные нанотрубки // Успехи физических наук. 1997. Т. 167. №9. С. 945-971.
  2. Раков Э.Г. Нанотрубки и фуллерены. М.: Университетская книга. 2006.
  3. PanZ.W., Xie S.S., Chang B.H. etal. Verylongcarbonnanotubes // Nature (London). 1998. V. 394. P. 631-632.
  4. Hirahara H., Suenaga K., Bandow S. etal. One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes // Phys. Rev. Lett. 2000. V. 85. №25. P. 5384-5587.
  5. http://www.pa.msu.edu/cmp/csc/ntproperties/
  6. Meyyappan M. Carbon nanotubes: Science and applications. CRC Press. Boca Raton. London, New York, Washington. D.C. 2005.
  7. Mauron P. Growth mechanism and structure of carbon nanotubes. PhD thesis, Universität Freiburg (Diss-Mauron.pdf on CD). 2003.
  8. Iijima S. Helical microtubules of graphitic carbon // Nature (London). 1991. V. 354. P. 56-58.
  9. Harris P.J.F. at all. High-resolution electron microscopy studies of a microporous carbon produced by arc-evaporation // J. Chem. Soc. Faradey Trans. 1994. V. 90. №18. P. 2799-2802.
  10. Heer W.A., Ugarte D. Carbon onions produced by heat treatment of carbon soot and their relation to the 217,5 nm interstellar absorption feature // Chem. Phys. Lett. 1993. V. 207. P. 480-486.
  11. Патент РФ №2218299 «Способ получения углеродных нанотрубок», B82B3/00, C23C14/35, заявлено: 17.07.2002 г., опубликовано: 10.12.2003 г.
  12. ПатентСША №2008/0124482 «Method and apparatus for producing single-wall carbon nanotubes» , класс 427/474, 977/844, опубликован 29.05.2008 г.
  13. Guo T., Nikolaev P., Rinzler D., Tomanek D.T., Colbert D.T., Smalley R. Self-assembly of tubular fullerenes // J. Phys. Chem. 1995. V. 99 Р. 10694-10697.
  14. Патент РФ №2305065 «Способ получения углеродных, металлических и металлоуглеродных наночастиц», B82B3/00, заявлено: 07.07.2005 г., опубликовано: 27.08.2007 г.
  15. Патент РФ №2294892 «Способ получения углеродных нанотрубок», B82B3/00, заявлено: 11.07.2005 г., опубликовано: 10.03.2007 г.
  16. Ivanov V. at all. Catalytic production and purification of nanotubules having fullerene-scale diameters. Carbon. 1995. V. 33. №12. P. 1727-1738.
  17. Патент РФ №2306257 «Способ формирования нано(микро)систем из углеродных нанотрубок», B82B3/00, заявлено: 26.12.2005 г., опубликовано: 20.09.2007 г.
  18. Европейскийпатент №1980529А1 «Process and apparatus for producing carbon nanotube», класс C01B31/02, опубликован: 15.10.2008 г.
  19. Sohn J.I., Choi Chel-Jong, Lee S., Seong Tae-Yeon. Growth behavior of carbon nanotubes on Fe-deposited (001) Si substrates. Appl. Phys. Lett. 2001. V. 78. №20. Р. 3130.
  20. Couchman P.R., Jesser W.A. Thermodynamic theory of size dependence of melting temperature in metals // Nature. 1977. V. 269.
    P. 481-483.