350 rub
Journal Nanotechnology : the development , application - XXI Century №1 for 2012 г.
Article in number:
Influence of Strong Variable Electric Field on Tunneling Effecton the Boarders of Cerbon Nanotubes
Authors:
N.G. Lebedev, M.B. Belonenko, N.N. Yanyushkina
Abstract:
The problem of carbon nanotubes electrons tunneling into graphene in the presence of strong external electric field was considered. Moreover, the carbon nanotubes were exposed to an external time-harmonic oscillating field was applied to a carbon nanotube. The equation system for mean values of number of particles, describing the tunneling process was obtained. The current-voltage characteristic for weak external field was constructed and the calculated data for the case of strong fields were analyzed. It can be seen that the main effect associated with the external oscillating field is the tunneling current modulation and the appearance of a set of peaks. These peaks are due to the non-parabolic dispersion law of electrons. As a consequence, electrons reduce their energy under the influence of the external oscillating field when momentum increases. These electrons can appear in the adjacent Brillouin zone, in the area where electron energy falls with momentum growth. It should be noted that this mechanism leads to the falling section on the carbon nanotube current-voltage characteristic. This is a common property of all systems with periodic dispersion law of electrons.
Pages: 18-22
References
  1. Slepyan G. Ya., Shuba M. V., Maksimenko S. A., Lakhtakia A. Theory of optical scattering by achiral carbon nanotubes and their potential as optical nanoantennas // Phys. Rev. B. 2006. V. 73. P.195416(1) - 195416(11).
  2. Chaste J., Lechner L., Morfin P., Fève G., Kontos T., Berroir J.-M., Glattli D. C., Happy H., Hakonen P., Plaçais B. Single carbon nanotube transistor at GHz frequency // Nano Lett., 2008, V. 8. N 2, Р.525-528.
  3. Nemilentsau A. M., Slepyan G.Ya., Maksimenko S. A. Thermal radiation from carbon nanotubes in the terahertz range // Phys. Rev. Lett. 2007. V. 99. P. 147403-148000.
  4. Kocabas C., Dunham, S., Cao Q., Cimino K., Ho X. N., Kim H. S., Dawson D., Payne J., Stuenkel M., Zhang H., Banks T., Feng M., Rotkin S. V., Rogers J. A. High-frequency performance of submicrometer transistors that use aligned arrays of single-walled carbon nanotubes // Nano Letters. 2009. V. 9. № 5. Р. 1937-1943.
  5. Maksimenko A.S., Slepyan G.Ya. Negative differential conductivity in carbon nanotubes // Phys. Rev. Lett. 2000. V. 84. № 2. P. 362-365.
  6. Левитов Л.С., Шитов А.В. Функции Грина. Задачи с решениями М.: Физматлит. 2003. 377 c.
  7. Mahan G. D. Many-particle physics. N.-Y.: Plеnum Press. 1990. 1032 p.
  8. Wallace P.R. The band theory of graphite // Phys. Rev. 1947. V. 71. № 9. P. 622-634.
  9. Ландау Л.Д., Лифшиц Е.М. Квантовая Механика. Т. 3. М.: Физматлит. 1989. 724 с.