350 rub
Journal Nanotechnology : the development , application - XXI Century №1 for 2010 г.
Article in number:
Laser Synthesis of Carbyne from Graphite and Amorphous Carbon
Authors:
Babaev V.G., Guseva M.B., Novikov N.D., Savchenko N.F., Khvostov V.V.
Abstract:
The paper deals with the effect of a shock wave generated by a laser pulse on two carbon materials, namely, pyrolytic graphite and a 10-mcm film of amorphous linear-chain carbon. The samples are irradiated by a neodymium laser with the wavelength of 1.06 µm in a vacuum of 0.3 Pa, recovered, and then investigated by the methods of transmission electron microscopy (TEM) and Auger spectroscopy. The laser pulse energy is approximately 70 J, with the duration of 580 ps and intensity of 440 GV/cm2. In the recovered samples, the formation of crystalline carbyne is observed with the lattice parameter a of 0.516 and 0.533 nm. Closely packed carbine crystals are revealed for the first time, which consist of linear chains without kink, as well as crystals of the characteristic size of -10 µm, which is an order of magnitude larger than the previously observed sizes. The electron diffraction data are used to calculate the electron potentials of carbyne crystals. The calculation results confirm that the carbon chains are packed in a close-packed hexagonal structure with minor distinctions for crystals formed in different parts of the sample. A minor amount of ultradisperse diamond is further detected in recovered samples of amorphous carbon.
Pages: 88-94
References
  1. Kudryavtsev Yu.P., Evsukov S.E., Guseva M.B., Babaev V.G. Carbyne-a Linear Chainlike Carbon Allotrope. In: Chemistry and Physics of Carbon. A Series of Advances. V. 25 / Ed. by A. Peter. Thrower. Marcel Dekker lnc. 1977. P. 1
  2. Rice M.J., Philpot S.R., Bishop A.R., Campbell D.K. Solitons, Polarons, a-Phonons in the Infinite Polyyne Chain // Phys. Rev. B. 1986. V. 34. No. 6. P. 4139.
  3. Little W.A. Possibility of Synthesizing an Organic Super Conductor // Phys. Rev. A. 1964. V. 134. P. 1416.
  4. Whittaker A.G. Carbon: A New Viwe of Its High-Temperature Behavior // Science. 1978. V. 200. P. 763.
  5. Kleiman J., Heimann R.B., Hawken D., Solansky N.M. Shock Compression and Flash Heating of Graphite/Metal Mixtures at Temperatures up to 3200 K and Pressures upto25GPa // J. Appl.Phys. 1984. V. 56. № 5. P. 1440.
  6. Бабина В.М., Бусти М., Гусева М.Б., Жук А.З., Миго А., Милявский В.В. Динамический синтез кристаллического карбина из графита и аморфного углерда // Теплофизика высоких температур. 1999. Т. 37. № 4. С. 573-581.
  7. Tuinstra F., Koening J.L. Raman Spectrum of Graphite //
    J. Chem. Phys. 1970. V. 53. №3. P. 1126.
  8. Guseva M.B., Babaev V.G., Novikov N.D. PCT Patent. International Application Number PCT/IB96/01487, December 18 (1996); WO 97/25078, July 17 (1997). US Patent 6.454.797 B2, US Patent 6.335.350 B1
  9. Kvostov V.V., Guseva M.B., Babaev V.G. Auger Spectroscopy Studies of Amorphous Carbon Film // Surface Sci. Lett. 1986. V. 169. No. 1. P. 1253.
  10. Nakamizo M., Kammereck R., Walker P.L. Laser Raman Studies of Carbon // Carbon. 1974. V. 12. P. 259.
  11. Couturier S., Resseguier Т., Hallouin M. et al. Shock Profile Indused by Short Laser Pulses // J. Appl. Phys. 1996. V. 79. No. 12. P. 9338.
  12. Kudryavtsev Yu.P., Evsukov S.E., Guseva M.B., Babaev V.G. Oriented Carbyne Layers // Carbon. 1992. V. 30. №2. P. 213.
  13. Шейндлин M.A. Диаграмма состояния углерода в области высоких температур // ТВТ. 1981. Т. 19. № 3. С. 630.
  14. Heimann R.B. Linear Finite Carbon Chains (Carbynes): Their Role During Dynamic Transformation of Graphite to Diamond and Their Geometric and Electronic Structure // Diamond and Related Materials. 1994. No. 3. P. 1151.
  15. Касаточкин В.И., Савранский В.В., Смирнов Б.И., Мельниченко В.М. Исследование карбина, конденсированного из паров углерода // ДАН СССР. 1974. Т. 217. №4. С. 796.
  16. Borodina ТА., Fortov V.E., Lash А.А. et al. Shock-Induced Transformations of Carbyne // J. Appl. Phys. 1996. V. 80. No. 7. P. 3757.
  17. Erskin D.J., Nellis WJ. Shock-Indused Martensitic Transformation of Highly Oriented Graphite to Diamond //
    J. Appl. Phys. 1992. V. 71. No. 10. P. 4882.
  18. Зельдович Я.Б., Райзер Ю.П. Физика ударных волн и высокотемпературных гидродинамических явления. М.: Физматгиз. 1963.
  19. Gust W.H. Phase Transition and Shock-Compression Parameters to 120 GPa for Three Types of Graphite and for Amorphous Carbon // Phys. Rev. B. 1980. V. 22. No. 10. P. 4744.
  20. Salzman D., Eliezer S., Krumbein A.D., Gitter L. Laser-Driven Shock-Wave Propagation in Pure and Layered Targets. Phys. Rev. A. 1983.V. 28.No. 3.P. 1738.