350 rub
Journal Nanotechnology : the development , application - XXI Century №1 for 2009 г.
Article in number:
Fullerenes as a Third Form of Carbon. Intermolecular Forces and Thermodynamic Properties of the Fullerites Family
Keywords:
Authors:
V.I. Zubov
Abstract:
A brief review is being done on the pre-history and discovery of fullerenes (and then carbon nanotubes) that make the third, molecular, form of carbon and on various, predominantly physical, properties of fullerites, i.e. of crystals composed of fullerene molecules. Particular attention is being given to the intermolecular forces, especially at orientationally disordered phases. The Girifalco potential is presented for eight fullerenes from C28 to C96 and its generalization is made for the interactions between the different fullerene molecules, Cm and Cn. The thermodynamic properties of the high-temperature modifications of a family of the fullerites, from C36 up to the C96, calculated in equilibrium with their saturated vapors on the basis of the correlative method of the unsymmetrized self-consistent field that enables one to take into account the strong anharmonicity of the lattice vibrations, are discussed. The calculations were accomplished up to the temperature of loss of stability (spinodal point) Ts. We compare our results with available experimental data. The behavior of some characteristics is considered in their dependence on the number of atoms in the molecule. Using the Lindemann-s melting criterion we estimate a possible melting curve for the C60 fullerite
Pages: 9-23
References
  1. H.W.Kroto, J.R.Heath, S.C.O-Brien, R.F.Curl, and R.E.Smalley, Nature, 318, 162 (1985).
  2. T.P.Stecher and B.Donn, Astrophys. J., 142, 1681, (1965).
  3. D.E.H. Jones, New. Scient., 32, 354 (1966).
  4. E.Osawa, Kagaku 25, 854 1970) (in Japanese).
  5. Z.Yoshida and E.Osawa, Aromaticity, Kagakudojin, Kyoto, 1971 (in Japanese), pp. 174 - 178.
  6. Д.А Бочвар и E.Г. Гальперн,  ДАН СССР 209, 610 (1973).
  7. I.V.Stankevich, M.В.Никеров и Д.А.Бочвар, Усп.. химии, 53, 640 (1984).
  8. R.A.Davidson, Ther. Chim. Acta 58, 193 (1981).
  9. Y.Iwasa, K.Tanoue, T.Mitani, and T.Yagi, Phys. Rev. B 58, 16374 (1998).
  10. T.L.Makarova, Superconductors 35, 243 (2001).
  11. W.Krätschmer, L.D.Lamb, K.Fostinoupolos and R. D. Huffman, Nature 347, 354 (1990).
  12. W.Krätschmer, Z. Phys. D19, 405 (1991).
  13. W.Krätschmer and R.D.Huffman, In The Fullerenes (Edited by H.W.Kroto, J.E.Ficsher and D.E.Cox), p. 5. Pergamon Press, Oxford - New York - Seoul - Tokyo (1993).
  14. F.I.W.David et al., Nature 353, 147 (1991).
  15. J.M.Howkins et al., Science 252, 213 (1991).
  16. K.Hedberg et al., Science 254, 410 (1991).
  17. R.Ettl et al., Nature 353, 149 (1991).
  18. S.Iijima, Nature 354, 56 (1991).
  19. T.W.Ebbesen and P.M.Ajayan, Nature 358, 220 (1992).
  20. R.S.Ruoff et al., Science 259, 346 (1993).
  21. Y.Yoshida, Appl. Phys. Lett. 64, 3048 (1884).
  22. А.В.Елецкий и Б.М.Смирнов, УФН 165 977 (1995).
  23. L. A. Girifalco, M. Hodak and R.S.Lee, Phys. Rev. B62, 13104 (2000).
  24. V.A.Davydov et al., Fullerenes, Nanotubes and Carbon  Nanostruc tures 12, 513 (2004).
  25. S.Tomita, M.Fujii, S.Hayashi, et al., Chem. Phys, Lett. 305, 225 (1999).
  26. J. de Bruijn, A. Dworkin, et al., Europhys. Lett. 24, 551 (1993).
  27. H.A.Ludwig, W.H.Fietz, F.W.Hornung, et al., Z. Phys. B96, 179 (1994).
  28. G. B. M. Vaughan, P. A. Heiney, J.E.Fischer, et al., Science 254, 1350 (1991).
  29. M.A. Verheijen, H. Meekes, P. Bennema, et al., Chem. Phys. 166, 287 (1992).
  30. A. Soldatov and O. Anderson,  Appl.  Phys. - Mater 64 , 227 (1997).
  31. V. Blank, M. Popov, S. Buga, et al., Phys. Lett. A188, 281 (1994).
  32. О. Башкин, В.И.Ращупкин, Н.П.Кобелев, и др., ЖЭТФ - письма  59, 258 (1994).
  33. В.В.Бражкин и А.Г.Ляпин,  УФН 166, 893 (1996).
  34. V. D. Blank, S. G.Buga, N. R. Serebrynaya, et al., Phys. Lett. A220, 149 (1996).
  35. P. M. Allemand, K. C. Klemani, A. Koch et al., Science 253, 301 (1991).
  36. H.Ajie, et al., J. Phys. Chem. 94, 8630 (1990).
  37. S.Saito and A.Oshiyama, Phys. Rev. Lett. 66, 2637  (1991).
  38. K. Prassides, in: Electronoc Properties of Fullerenes (Eds. H.Kuzmany, J.Fink, M.Mehring and S.Roth), Berlin, Springer Verlag,1993.
  39. M.Schlüter, M.Lannoo, M.Needels, et al., See Ref. 13, p. 303.
  40. K.Tanigaki et al., Nature, 356, 419 (1992).
  41. В.Н.Безмельницын и А.В.Елецкий, Журн. Сверх¬проводимости  6, 437 (1993).
  42. Y.Wang, Nature, 356, 585 (1992).
  43. F.Mochizuki, et al., J. Phys.: Condens. Matter 10, 2347 (1998).
  44. T.Ohno, K.Matsuishi and S.Onari, Solid State Commun. 101, 785 (1997).
  45. M.S.Dresselhaus, G. Dresselhaus and P. C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic, San Diego, 1995).
  46. V.Buntar, F.M.Sauerzopf and H.W.Weber, Austr. J. Phys. 50, 329 (1997).
  47. Fullerenes and Related Structures, Ed. by A.Hirsh (Springer Verlag, Berlin, 1999).
  48. Optical and Electrical Properties of Fullerenes and Fullerene-Band Materials, Ed. by J.Shinar (Marcel Decker, New York, 1999).
  49. V.I.Zubov. Internet Electronic Journal Nanociencia et Moletrónica 4, 249 (2004).
  50. Lu, J., Li, X. and Martin, R.M. Phys. Rev. Lett., 68, 1551 (1992).
  51. Sprik,  M.,  Cheng, A. and  Klein, M. L. J. Phys. Chem., 96, 2027 (1992).
  52. L.A.Girifalco, J. Phys. Chem. 96, 858 (1992).
  53. M. A. Verheijen, H. Meekes, P. Bennema,  et  al., Chem. Phys. 166, 287 (1992).
  54. K. Kniaz, L. A. Girifalco and J.E.Fischer,  J. Phys. Chem. 99, 16804 (1995).
  55. M. C. Abramo and C. Caccamo, J.  Phys.  Chem. Solids 57, 1751 (1996).
  56. V.I.Zubov, Molec. Mater. 13, 385 (2000).
  57. Y. Saito, T. Yoshikawa, N. Fujimoto, and  H. Shi nihara, Phys. Rev., B48, 9182 (1993).
  58. С.П.Молчанов, А.М.Попов, А.В.Сухоруков,  Поверхность, № 8-9, 42 (1994).
  59. V.I.Zubov, Fullerenes, Nanotubes and Carbon  Nanostructures 12, 499 (2004).
  60. Zh. Dong, P. Zou, J. M. Holen, P. C.Eklund, et al., Phys. Rev. B48, 2863 (1993).
  61. X.-W.Wang, C.-Z.Wang and K.M.Ho, Phys. Rev.  B48, 1884 (1993).
  62. M. C. Martin, X. Du, J. Kwon and L. Mihali, Phys. Rev. B50, 171 (1994).
  63. G. Onida, W. Andreoni, J. Kohanoff and M. Parinello, Chem. Phys. Lett. 219, 1 (1994).
  64. V. I. Zubov, N. P.Tretiakov, J.F.Sanchez and A.A.Caparica, Phys. Rev. B53, 18, 12080 (1996).
  65. V. I. Zubov and  Ya. P. Terletsky, Ann. Phys. (Germany) 24, 97 (1970).
  66. V. I. Zubov, Phys. stat. Solidi(b) 87, 385; 88, 43 (1978).
  67. V.I.Yukalov and V.I.Zubov, Fortschr. Phys. 31, 627 (1983).
  68. V. I. Zubov,  J. F.Sanchez, N.P.Tretiakov and A. E. Yusef, Int. J. Mod. Phys. B9, 803 (1995).
  69. V. I. Zubov, N. P.Tretiakov, et al., Phys. Lett. A194, 223   (1994).
  70. V.I.Zubov, J.F.Sanchez-Ortiz, et al.,  Phys. Rev. B55, 6747 (1997).
  71. V. I. Zubov, J. F. Sanchez, N. P. Tretiakov, et al., Carbon 35, 729 (1997).
  72. V. I. Zubov, N. P. Tretiakov, I. V. Zubov, et al., J. Phys. Chem. Solids 58, 2039 (1997).
  73. V. I. Zubov, N. P. Tretiakov, I. V. Zubov, et al.,   J. Phys. Chem. Solids 60, 547 (1999).
  74. V.I.Zubov, N.P.Tretiakov and J.N.Teixeira Rabelo, Molec. Mater. 13, 349 (2000).
  75. V. I. Zubov,  I.V.Zubov and J.N.Teixeira Rabelo, J. Phys. Chem. B107, 10458 (2003).
  76. C. K. Mathews, S. Radjagopalan,  K.V.G.Kutty, et al., Solid Stat. Communs. 85, 377 (1993).
  77. J. E. Fischer and P.A.Heiney, J. Phys. Chem Solids 54, 1725 (1993).
  78. H. Kawada, Y. Fujii, H. Nakao,  et  al.,  Phys. Rev. B51, 8723 (1995).
  79. J. Abrefah, D. R. Olander, M. Balooch and W. J. Siekhaus, Appl. Phys. Lett. 60, 1313 (1992).
  80. C.K.Mathews,  M.Sai Baba, T.S.L. Narasimhan, et al.,  J. Chem. Phys. 96, 3566  (1992).
  81. V. Piacente, G. Gigli, P.Scardala, et al. , J. Chem. Phys. 99, 14052 (1995).
  82. М.В.Коробов, Е.В.Скокан, Д.Ю.Борисова, Л.М.Хомич,  Ж. Физ. Химии, 70, 999 (1996)
  83. В.Ю.Марков, О.В.Болталина, Л.Н.Сидоров, ZЖ. Физ. Химии, 75, 5 (2001).
  84. B. Brunetti, G. Gigli, E. Giglio, et al., J. Phys. Chem. B101, 10715 (1997).
  85. О. V.Boltalina, V.Iu.Markov, A.Ya.Borchevskii, et al., Rapid Commun. Mass. Spectrom. 12,1028 (1998).
  86. О.V.Boltalina, V.Iu.Markov, A.Ya.Borchevskii, et al., Mendeleev Commun., 1998, 4, p. 143.
  87. V.Piacente, C.Patchette, G.Gigli and P.Scardala, J. Phys. Chem. A101, 4303 (1997).
  88. Boltalina, V.Iu.Markov, A.Ya.Borchevskii, et al., Recent Advances in the Chemistry and Physics of Fullerenes and Related Materials 6, 614 (1998).
  89. F.M.S.S.Fernandes, F. M. M. Freitas and R. P.S. Fartaria, J. Phys. Chem. B107, 276 (2003).
  90. G. Leibfried, Gittertheorie der mechanischen und thermischen Eigenschaften der Kristalle, Springer-Verlag, Berlin, 1955, in German.
  91. В.К.Семенченко, в кн.: Перегретые жидкости и фазовые переходы, АН СССР, Свердловск, 1979,  с. 3.
  92. G.E.Norman and V.V.Stegailov, Dokl. Phys. 47,  667 (2002).
  93. M.N.Krivoguz, G.E.Norman, V.V.Stegailov, et al.J Phys. A - Math. Gen. 36, 6041 (2003).
  94. Y.  Jin, J. Cheng, M. Varma-Nair,  et  al., J. Phys. Chem. 96, 5151 (1992).
  95. T.Matsuo, H.Suga, W.I.F.David, et al., Solid Stat. Commun. 83, 711 (1993).
  96. J.E.Fischer,  A.R.McGhie, J.K.Estrada, et al.,   Phys. Rev. B53, 11418 (1996)
  97. Б.В.Лебедев, К.Б.Жогова, Т.А.Быкова, и др., Изв. Росс. Акад. Наук, Сер. Химия, 45  2113 (1966).
  98. M.H.J.Hagen, E.J.Meijer, G.C.A.M.Mooij, et al.,  Nature 365, 425 (1993).
  99. N. W. Ashcroft,  Europhys. Lett. 16,  355 (1991); Nature 365, 387 (1993).
  100. A.Cheng, M.L.Klein and C.Caccamo, Phys. Rev.Lett. 71, 1200 (1993).
  101. C.Caccamo, Phys. Rev. B51, 3387 (1995).
  102. M. Nasegava and K. Ohno, Phys.  Rev. E54, (1996).
  103. M. A. Abramo and G. Coppolino,  Phys. Rev.   B58, 2372 (1998).
  104. M. R. Statzer, P. A. Heiney, J. E. Fischer and A. R. Mc Ghie, Phys. Rev. B55, 127 (1997).
  105. S.G.Kim and D.Tománek, Phys. Rev. Lett. 72, 2418 (1994).
  106. M.Nasegava and K.Ohno, J. Chem. Phys. 113, 4315 (2000).
  107. A.L.C.Ferreira, J.M.Pacheco  and  J.P.Prates-Ramalho, J. Chem. Phys. 113, 738 (2000).
  108. M. A. Abramo, C. Caccamo, D. Costa and G. Pelicane, Europhys. Lett. 54, 468 (2001).
  109. M. Ross, Phys. Rev. 184, 233 (1969).
  110. С.М.Стишов, УФН 114,  3 (1974).
  111. В.И.Зубов, Ж. Физ. Химии, 55,  2171 (1981).
  112. V.I.Zubov,  M.F.Pascual, et al, Phys. stat. sol.(b) 182, 315 (1994).
  113. V.I.Zubov and C. G.Rodrigues, Phys. stat.  sol.(b) 222, 471 (2000).
  114. V. I. Zubov, C. G. Rodrigues  and I.V.Zubov,  Phys. stat. sol.(b) 238, 110 (2003).
  115. V.B.Magalinskii and V.I.Zubov, Phys. stat. sol. (b) 105, K139 (1981).
  116. А.Н.Утюж и В.В.Кечин,  ЖЭТФ  85, 795 (1983).
  117. В.И.Зубов и В.Б.Магалинский, V.I. TВТ  21, 394 (1983).
  118. Electronic Properties of Novel Materials Science and Technology of Molecular Nanostructures,     Ed. by H.Kuzmany, J.Fink, M.Mehring and S.Roth. AIP Conference Procedings, v. 486 (1999).
  119. P.C.Eklund and A.M.Rao, in: Fullerene Polymers and Fullerene Polymer Composites. Springer Series in Material Science, v. 38 (2000).
  120. K.Kniaz?, J.E.Fischer,. L.A.Girifalco, et al.,  Solid State Commun. 96, 739 (1995).
  121. D. Havlik,  W.Schranz,  M.Haluska,  et  al., Solid State Commun. 104, 775 (1997).
  122. A.W.Jensen, S.R.Wilson and D.I.Shuster, Bioorg.and Med. Chem. 115, 7918 (1996).
  123. Г.А.Домрачев, А.И.Лазарев, и др. ФТТ 46, 1901(2004).