350 rub
Journal №1 for 2017 г.
Article in number:
Magnetic ordering in the antiferromagnetic structure is described three-vertex antiferromagnetic Potts model
Authors:
A.B. Babaev - Ph.D. (Phys.-Math.), Associate Professor, Institute of Physics, Dagestan Scientific Center, Russian Academy of Sciences (Makhachkala)
Е-mail: b_albert78@mail.ru
A.K. Murtazaev - Dr.Sc. (Phys.-Math.), Professor, Corresponding Member RAS, Director of Institute of Physics, Dagestan Scientific Center, Russian Academy of Sciences (Makhachkala)
E-mail: m_akai2005@mail.ru
T.R. Rizvanova - Post-graduate Student, Institute of Physics, Dagestan Scientific Center, Russian Academy of Sciences (Makhachkala)
Е-mail: b_albert78@mail.ru
Abstract:
Phase transitions, frustrations and magnetic ordering in two-dimensional structures described by a three-vertex antiferromagnetic Potts model on a triangular lattice are investigated by the Monte Carlo method with regard to nearest and next-nearest neighbors with interaction constants J1 and J2, respectively. Phase transitions in these models are analyzed for the ratio r = J2/J1 of next-nearest to nearest exchange interaction constants in the interval 0 ≤ r ≤ 2,0. On the basis of the analysis of the low-temperature entropy, and the fourth-order Binder cumulants, it is shown that a Potts model with interaction constants J1 < 0 and J2 < 0 exhibits a first-order Phase transitions in the range of 0≤ r < 0,2 and 1,0 < r ≤ 2,0, whereas, in the interval 0,2 ≤ r ≤ 1,0, frustrations arise in the system.
Pages: 3-7
References
- Diep H.T. Frustrated spin systems // World Scientific Publishing Co. Pte. Ltd. Singapore. 2004.
- Wu F.Y. The Potts model // Rev. Mod. Phys. 1982. V. 54. R. 235.
- Murtazaev A.K., Babaev A.B. Fazovye perekhody v dvumernojj antiferromagnitnojj modeli Pottsa na treugolnojj reshetke // Izvestija RAN. Serija fizicheskaja // 2013. T. 77. № 10. S. 1476.
- Loison D., Schotte K.D. First and second order transition in frustrated XY systems // The European Physical Journal B. 1998. № 5. P. 735.
- Gekht R.S. Magnitnye sostojanija i fazovye perekhody vo frustrirovannykh antiferromagnetikakh s treugolnojj reshetkojj // Uspekhi fizicheskikh nauk. 1989. T. 159. S. 261.
- Murtazaev A.K., Babaev A.B., Magomedov M.A., Kassan-Ogly F.A., Proshkin A.I. Frustracii i fazovye perekhody v trekhvershinnojj modeli Pottsa na treugolnojj reshetke s vzaimodejjstvijami vtorykh blizhajjshikh sosedejj // Pisma v ZHEHTF. 2014. T. 100. № 4. S. 267.
- Babaev A.B., Murtazaev A.K., Sulejjmanov EH.M., Rizvanova T.R. Issledovanie vlijanijj frustracijj na termodinamicheskie svojjstva nizkorazmernojj modeli Pottsa metodami kompjuternogo modelirovanija // Fizika tverdogo tela. 2016. T. 58. № 10. S. 2001.
- Peczac P., Ferrenberg A.M., Landau D.P. High-accuracy Monte Carlo study of the three-dimensional classical Heisenberg ferromagnet // Phys. Rev. B. 1991. V. 43. S. 6087.
- Eichhorn K., Binder K. Monte Carlo investigation of the three-dimensional random-field three-state Potts model // J. Phys.: Condens. Matter. 1996. № 8. P. 5209.
- Murtazaev A.K., Babaev A.B., Gistogrammnyjj analiz dannykh dlja trekhmernojj razbavlennojj ferromagnitnojj modeli Pottsa s chislom sostojanijj spina Q = 3 i Q = 4. // ZHurnal ehksperimentalnojj i teoreticheskojj fiziki. 2013. T. 143. Vyp. 1. S. 116 [JETP. 2013. V. 116. № 1. R. 101].
- Murtazaev A.K., Babaev A.B. Phase transitions and critical phenomena in a three-dimensional site-diluted Potts model // Journal of Magnetism and Magnetic Materials. 2012. V. 324. R. 3870.
- Murtazaev A.K., Babaev A.B., Ataeva G.JA. Fazovye perekhody v dvumernojj ferromagnitnojj modeli Pottsa pri q = 3 na treugolnojj reshetke // Fizika nizkikh temperatur. 2013. T. 39. S. 194.
- Murtazaev A.K., Babaev A.B., Aznaurova G.Y. Investigation of the critical properties in the 3d site-diluted Potts model // Diffusion and Defect Data Pt.B: Solid State Phenomena. 2009. V. 152-153. R. 571.
- Murtazaev A.K., Babaev A.B., Fazovye perekhody v dvumernojj ferro- i antiferromagnitnojj modeljakh Pottsa na treugolnojj reshetke // ZHurnal ehksperimentalnojj i teoreticheskojj fiziki. 2012. T. 142. Vyp. 12. S. 1189 [JETP. 2013. V. 115. № 6. R. 1042].