350 rub
Journal №4 for 2016 г.
Article in number:
Formation of strained and highly doped germanium layers
Authors:
R.I. Batalov - Ph.D. (Phys.-Math.), Senior Research Scientist, E.K. Zavoyskii Kazan Physical-Technical Institute of RAS E-mail: batalov@kfti.knc.ru R.M. Bayazitov - Dr.Sc. (Phys.-Math.), Leading Research Scientist, E.K. Zavoyskii Kazan Physical-Technical Institute of RAS, Kazan State Power Engineering University E-mail: batalov@kfti.knc.ru I.A. Faizrakhmanov - Dr.Sc. (Phys.-Math.), Chief Research Scientist, E.K. Zavoyskii Kazan Physical-Technical Institute of RAS E-mail: batalov@kfti.knc.ru G.D. Ivlev - Ph.D. (Phys.-Math.), Senior Research Scientist, Belarussian State University, Minsk, Belarus
Abstract:
Currently an actual problem of micro- and optoelectronics is a creation of tensile-strained and highly-doped Ge layers. In this work a method to produce such layers are offered which include ion-beam sputtering of composite Sb/Ge target, deposition of sputtered substance as a thin amorphous Ge:Sb film (~ 200 nm) onto the different substrates (silicon, sapphire, quartz) and its crystallization by pulsed laser annealing. It is shown that the combination of ion-beam sputtering and pulsed laser annealing leads to introduction of increased levels of tensile strain (up to 1%) into polycrystalline Ge films and obtaining uniformly doped Ge:Sb layers with high degree of dopant electrical activation. It is expressed in the low film resistance (up to 40 Ohm/) and extremely high electron concentration ( up to 5.5×1020 cm-3) reached at quartz substrate.
Pages: 32-38
References

 

  1. Kenyon A.J. Erbium in silicon. // Semicond. Sci. Technol. 2005. Vol. 20. P. R65-R84.
  2. Sun C.M., Tsang H.K., Wong S.P., Cheung W.Y., Ke N., Lourenco M.A., Homewood K.P. Electroluminescence from metal-oxide-silicon tunneling diode with ion-beam-synthesized b-FeSi2 precipitates embedded in the active region // Nucl. Instrum. Meth. B. 2009. V. 67. P. 1081-1084.
  3. Kveder V., Badylevich M., Steinman E., Izotov A., Seibt M., Schroter W. Room-temperature silicon light-emitting diodes based on dislocation luminescence // Appl. Phys. Lett. 2004. V. 84. P. 2106-2108.
  4. Lobanov D.N., Novikov A.V., Kudrjavcev K.E. i dr. Vlijanie tolshhiny kremnievogo razdelitelnogo sloja na ehlektroljuminescenciju mnogoslojjnykh struktur s samoformirujushhimisja ostrovkami Ge(Si)/Si(001) // FTP. 2012. T. 46(11). S. 1448-1452.
  5. Liu J., Kimerling L.C., Michel J. Monolithic Ge-on-Si lasers for large-scale electronic-photonic integration // Semicond. Sci. Technol. 2012. V. 27. P. 094006(1-13).
  6. Saito S., Al-Attili A.Z., Oda K., Ishikawa Y. Towards monolithic integration of germanium light sources on silicon chips // Semicond. Sci. Technol. 2016. V. 31. P. 043002 (19 p.).
  7. Camacho-Aguilera R., Cai Y., Patel N., Bessette J.T., Romagnoli M., Kimerling L.C., Michel J. An electrically pumped germanium laser // Opt. Express. 2012. V. 20. P. 11316-11320.
  8. Koerner R., Oehme M., Gollhofer M., Schmid M., Kostecki K., Bechler S., Widmann D., Kasper E., Schulze J. Electrically pumped lasing from Ge Fabry-Perot resonators on Si // Opt. Express. 2015. V. 23, № 11. P. 14815-14822.
  9. Dutt B.R., Sukhdeo D.S., Nam D., Vulovic B.M., Yuan Z., Saraswat K.C. Roadmap to an efficient germanium-on-silicon laser: strain vs. n-type doping // IEEE Photon. J. 2012. V. 4(5). P. 2002-2009.
  10. Claeys C., Simoen E. Germanium-based technologies. From Materials to Devices // Amsterdam. Elsevier. 2007. 476 p.
  11. Novikov G.A., Batalov R.I., Bajazitov R.M. i dr. Impulsnaja modifikacija plenok germanija na podlozhkakh kremnija, sapfira i kvarca: struktura i opticheskie svojjstva // FTP. 2015. T. 49(6). S. 746-752.
  12. Novikov G.A., Batalov R.I., Bajazitov R.M. i dr. Opticheskaja diagnostika lazerno-inducirovannykh fazovykh prevrashhenijj v tonkikh plenkakh germanija na kremnii, sapfire i kvarce // ZHTF. 2015. T. 85(3). S. 89-95.
  13. Glazov V.M., Zemskov V.S. Fiziko-khimicheskie osnovy legirovanija poluprovodnikov. M.: Nauka. 1967. 372 s.
  14. Bruno E., Scapellato G.G., Bisognin G., Carria E., Romano L., Carnera A., Priolo F. High-level incorporation of antimony in germanium by laser annealing // J. Appl. Phys. 2010. V. 108. P. 124902(1-6).
  15. Bruno E., Scapellato G.G., La Magna A., Cuscuna M., Napolitani E., Boninelli S., Priolo F., Fottunato G., Privitera V. Anomalous transport of Sb in laser irradiated Ge // Appl. Phys. Lett. 2012. V. 101. P. 172110(1-5).
  16. Jingming C., Bin S., Jibao W., Linxi F., Heming Z., Huiyong H., Rongxi X., Jianjun S. Enhanced electroluminescence from a free-standing tensilely strained germanium nanomembrane light-emitting diode // J. Semicond. 2015. V. 36(10). P. 104004 (1-4).
  17. El Kurdi M., Kociniewski T., Ngo T.-P., Boulmer J., Débarre D., Boucaud P., Damlencourt J. F., Kermarrec O., Bensahel D. Enhanced photoluminescence of heavily n-doped germanium // Appl. Phys. Lett. 2009. V. 94. P. 191107 (1-3).