350 rub
Journal №2 for 2016 г.
Article in number:
Critical properties of the antiferromagnetic Ising model on a square lattice with next-nearest-neighbor interactions
Authors:
A.K. Murtazaev - Dr. Sci. (Phys.-Math.), Professor, Corresponding Member RAS, Institute of Physics, Dagestan Scientific Center, Russian Academy of Sciences, Makhachkala. E-mail: m_akai2005@mail.ru
M.K. Ramazanov - Ph.D. (Phys.-Math.), Senior Research Scientist, Institute of Physics, Dagestan Scientific Center, Russian Academy of Sciences, Makhachkala. E-mail: sheikh77@mail.ru
M.K. Badiev - Ph.D. (Phys.-Math.), Senior Research Scientist, Institute of Physics, Dagestan Scientific Center, Russian Academy of Sciences, Makhachkala. E-mail: m_zagir@mail.ru
Abstract:
Frustrated model of magnetic nanostructures are studied using the high-efficient replica Monte-Karlo algorithm. Estimations are made for the magnitude relations of the next-nearest-neighbor and nearest-neighbor exchange interactions r = J2/J1 in the value ranges r [0.0,0.4] and r [0.7,1.0] with Δr = 0.1. The static critical exponents of the heat capacity, the susceptibility, the ordering parameter, and the correlation length, as well as the Fisher exponent, are calculated by means of the finite-size scaling theory. The universality class of the critical behavior of this model is revealed to remain within the limits of values r [0.0,0.4]. It is found that the change in the next-nearest-neighbor interaction value in the range r [0.7,1.0] leads to nonuniversal critical behavior.
Pages: 8-13
References
- Barber M.N. Non-universality in the Ising model with nearest and next-nearest neighbour interactions // J. Phys. A. 1979. V. 12. P. 679.
- Landau D.P., Binder K. Phase diagrams and critical behavior of Ising square lattices with nearest-, next-nearest-, and third-nearest-neighbor couplings // Physical Review B. 1985. V. 31. Article Number: 5946.
- Plascak J.A. Renormalization group study of the two-dimensional Ising model with crossing bonds // Physica A. 1992. V. 183. P. 563.
- Ising E. Beitrag zur theorie des ferromagnetismus // Phys Z. 1925. V. 31. P. 253.
- Landau D.P. and Binder K. // Monte Carlo Simulations in Statistical Physics. Cambridge University Press, Cambridge. 2000.
- Kassan-Ogly F.A., Filippov B.N., Murtazaev A.K., Ramazanov M.K., Badiev M.K. Influence of field on frustrations in low-dimensional magnets// J. of Magnetism and Magnetic Materials. 2012. V. 324. P. 3418.
- Nightingale M.P. Non-universality for ising-like spin systems // Phys. Lett. A. 1977. V. 59. P. 486.
- Binder K. and Landau D.P.Phase diagrams and critical behavior in Ising square lattices with nearest- and next-nearest-neighbor interactions // Physical Review B.1980. V. 21. R. 1941.
- Moran-Lopez J.L., Aguilera-Granja F., Sanchez J.M. First-order phase transitions in the Ising square lattice with first- and second-neighbor interactions // Physical Review B. 1993. V. 48. P. 3519.
- Kalz A., Honecker A. Location of the Potts-critical end point in the frustrated Ising model on the square lattice // Physical Review B. 2012. V. 86. R. 34410.
- Jin S., Sen A. and Sandvik A.W. Ashkin-Teller Criticality and Pseudo-First-Order Behavior in a Frustrated Ising Model on the Square Lattice // Phys. Rev. Lett. 2012. V. 108. R. 045702.
- Murtazaev A.K., Ramazanov M.K., Badiev M.K. Kriticheskie svojjstva antiferromagnitnojj modeli Izinga na kvadratnojj reshetke s vzaimodejjstvijami vtorykh blizhajjshikh sosedejj // FNT.2011. T. 37. S. 1258.
- Murtazaev A.K., Ramazanov M.K., Badiev M.K. Staticheskoe kriticheskoe povedenie trekhmernojj frustrirovannojj modeli Gejjzenberga na sloistojj treugolnojj reshetke s peremennym mezhslojjnym obmennym vzaimodejjstviem //ZHEHTF. 2007. T. 132. S. 1152 .
- Murtazaev A.K., Ramazanov M.K., Badiev M.K.Malye iagnitnye chasticy s frustracijami // Izvestija RAN. Serija fizicheskaja. 2014. T. 78. S. 455.
- Murtazaev A.K., Ramazanov M.K., Badiev M.K. Issledovanie fazovykh perekhodov frustrirovannojj modeli Gejjzenberga na treugolnojj reshetke metodami Monte-Karlo // FTT. 2010. T. 52. S. 1557.
- Murtazaev A.K., Ramazanov M.K. Issledovanie kriticheskikh svojjstv frustrirovannojj antiferromagnitnojj modeli Gejjzenberga na treugolnojj reshetke // FTT. 2011. T. 53. S. 1004.
- Murtazaev A.K., Ramazanov M.K., Badiev M.K. Issledovanie kriticheskikh svojjstv trekhmernojj frustrirovannojj modeli Gejjzenberga na treugolnojj reshetke metodami Monte-Karlo// FNT. 2009. T. 35. S. 663.
- Mitsutake A., Sugita Y., Okamoto Y. Generalized ensemble algorithms for molecular simulations of biopolymers // Biopolymers (Peptide Science). 2001. V. 60. P. 96.
- Murtazaev A.K., Ramazanov M.K., Badiev M.K. Fazovye perekhody i kriticheskie svojjstva frustrirovannojj modeli Gejjzenberga na sloistojj treugolnojj reshetke s vzaimodejjstvijami sledujushhikh za blizhajjshimi sosedejj // ZHEHTF. 2012. T. 142. S. 338.