350 rub
Journal №1 for 2016 г.
Article in number:
Threshold characteristics of the double gate symmetric MOSFETs nanotransistor with a Gaussian vertical doping profile
Authors:
N.V. Masalskii - Ph.D. (Phys.-Math.), the Manager Sector, Research Institute for System Studies of RAS, Moscow. E-mail: volkov@niisi.ras.ru
Abstract:
Approach for 2D simulation of surface potential distribution and threshold voltage for the double gate symmetric SOI CMOS nano-transistor with a vertical Gaussian doping profile in work area is discussed. The model is based on the analytical solution of a 2D Pois-son\'s equation. By means of numerical modeling influence of the steepness of a doping profile and topological transistor parameters on surface potential distribution and threshold voltage is probed. It is received that application of a steep Gaussian doping profile sig-nificantly reduces shift of threshold voltage upon transition to lower topological norms. Results of simulation are in good compliance this received by means of commercially available ATLAS program.
Pages: 45-51
References

 

  1. URL: http://public.itrs.net/International technology roadmap for semiconductor 2014 edition. (dataobrashhenija 17.11.2014).
  2. Kranti A., Armstrong G. A. Engineering source/drain extension regions in nanoscale double gate (DG) SOI MOSFETs: Analytical model and design considerations // Solid-State Electronics. 2006. V. 50. № 2. R. 437-447.
  3. Reyboz M., Rozeau O., Poiroux T., Martin P., Jomaah J. An explicit analytical charge based model of undoped independent Double-Gate MOSFET // Solid-State Electronics. 2006. V. 50. № 5. R. 1276-1285.
  4. Zhang G., Shao Z., Zhou K. Threshold voltage model for short channel FD-SOI MOSFETs with vertical Gaussian profile // IEEE Trans. ElectronDevices. 2008. V. 55. № 5. R. 803-809.
  5. Masalskijj N.V.Voprosy masshtabirovanija kharakteristik KMOP SBIS // Uspekhi sovremennojj radioehlektroniki. 2009. № 7. S. 3-27.
  6. Nikolic B..Design in the Power-Limited Scaling Regime // IEEE Trans Electron Devices. 2008. V. 55. № 1. R. 71-83
  7. Masalskijj N.V.Modelirovanie kharakteristik logicheskikh i arifmeticheskikh ehlementov na polnostju obednennykh KMOP KNI nanotranzistorakh // Nanomaterialy i nanostruktury -XXI vek. 2010. № 2. S. 9-16.
  8. Colinge J.P. Multiple-gate SOI MOSFETs // Solid-State Electronics. 2004. V. 48. № 3. R. 897-909.
  9. URL:http://www.silvaco.com/ Silvaco Int. 2004: ATLAS User-s Manual A 2D numerical device simulator (dataobrashhenija 22.10.2015).
  10. Cerdeira A., Iñiguez B., Estrada M. Compact model for short channel symmetric doped double-gate MOSFETs // Solid-State Electronics. 2008. V. 52. № 4. R. 1064-1071.
  11. Tsormpatzoglou A., Dimitriadis C. A., Clerc R., Pananakakis G. Threshold voltage model for short- channel undoped symmetrical Double Gate MOSFETs // IEEE Tran. Electron Devices. 2008. V. 55. № 12. R. 2512-2520.
  12. Kang H., J.W. Han J.W., Y.K.Choi Y.K. Analytical threshold voltage model for Double-Gate MOSFETs with localized charges // IEEE Electron Device Letters. 2008. V. 29. № 3. R. 927-935.
  13. Djeffal F., Meguellati M., Benhaya A. A two-dimensional analytical analysis of subthreshold behavior to study the scaling capability of nanoscale graded channel gate stack DG MOSFETs // Physica E: Low-dimensional System. Nanostructures. 2009. V. 41. № 10. R. 1872-1877.
  14. Korn G., Korn T.Spravochnik po matematike dlja nauchnykh rabotnikov i inzhenerov. M.: Fizmatgiz. 1978. 832 s.
  15. Bronshtejjn I.N., Semendjaev K.A. Spravochnik po matematike dlja inzhenerov i uchashhikhsja vtuzov. M.: Nauka. 1981. 720 s.