350 rub
Journal №3 for 2013 г.
Article in number:
Super resolution microscopy of materials with high nonlinearity
Authors:
E.D. Mishina, N.E. Sherstyuk, S.V. Semin, S.D. Lavrov
Abstract:
The increase in the spatial resolution in the high optical harmonics generation is well known. However, this effect can not be used in optical microscopy, as harmonics fall within the range of far ultraviolet and its detection in microscopy mode is quite difficult. This paper proposes a new method for super resolution microscopy, using effects on the high nonlinearity of the material with the resulting radiation being left in the visible range. Such effects are two-photon superluminescence. One of the such effects is super-resolution, another can occur in the laser-induced phase transitions. In the first case, the non-linearity of order n increases the resolution for the Gaussian beam up to  n. In the second case, the increase in resolution depends on the properties of the phase transition. The paper discusses examples of superresolution microscopy for bio-organic peptide microtubes, for which annealing and the phase transition resulted in appearance of superluminescence. The ways are discussed for extending the class of materials for which the proposed method can be applied.
Pages: 38-43
References

  1. Hell S.W. Microscopy and its focal switch // Nat. Methods. 2009. V. 6. P. 24.
  2. N-SIM Super-Resolution, http://www.nikoninstruments.com/
  3. Leica STED microscope, http://www.letsgodigital.org/en/11610/leica_microscope/
  4. Xu C., Webb W.W. Measurement of two-photon excitation cross sections of molecular fluorophores with data from 690 to 1050 nm // J. Optic. Soc. Am. 1996. B 13, P. 481-491.
  5. Cox G., Sheppard C.J.R. Practical Limits of Resolution in Confocal and Non-Linear Microscopy // Microscopy Research And Technique. 2004. V. 63. P. 18-22.
  6. HaS.K., Song J.D., Lim J.Y., BounouarS., Donatini F., Dang L.S., Poizat J.P., Kim J.S., Choi W.J., HanI. K., Lee J.I. Growth and characterization of low density droplet GaAs quantum dots for single photon sources // Proc. of SPIE. 2011. V. 7945 79452H-1.
  7. Andreeva E.V., Zhukov A.E., Prokhorov V.V., Ustinov V.M., Yakubovich S.D. Superluminescent inas/algaas/gaas quantum dot heterostructure diodes emitting in the 1100 ( 1230-nm spectral range // Quantum Electronics. 2006. V. 36. N. 6. P. 527-531.
  8. Groiss H., Kaufmann E., Springholz G., Schwarzl T., Hesser G., Sch¨affler F., Heiss W., Koike K., Ikatura T., Hotei T., Yano M., Wojtowicz T. Size-controlled quantum dots fabricated by precipitation of epitaxially grown, immiscible semiconductor heterosystems // J. Phys.: Condens. Matter. 2008. V. 20. 454216, P. 1-4.
  9. Emel'yanov V.I., Kamenev B.V., Kashkarov P.K., Konstantinova E.I., Timoshenko V.Ju., Terukov E.I., Bresler M.S., Gusev O.B. Sverxlyuminesczencziya Er3+ v matricze amorfnogo kremniya // Fizika tvyordogo tela. 2000. T. 42. Vy'p. 8. S. 1372-1375.
  10. Semin S.V., Kudryavczev A.V., Mishina E.D. Avtomatizirovanny'j dvuxfotonny'j skaniruyushhij mikroskop // PTE'. 2012. Vy'p. 1. S. 1-7.  
  11. Semin S.V., Mishina E.D. Dvuxfotonny'j skaniruyushhij mikroskop // Patent RF na izobretenie № 2472118 ot 10.01.2013.
  12. Mishina E.D., Semin  S.V., Sherstyuk  N.E'., Lavrov S.D. Dvuxfotonny'j skaniruyushhij mikroskop s avtomaticheskoj tochnoj fokusirovkoj izobrazheniya i sposob avtomaticheskoj tochnoj fokusirovkoj izobrazheniya // 2012. Zayavka o vy'dache patenta RF na izobretenie № 2012135405.
  13. Stanciu C.D., Hansteen F., Kimel A.V., Kirilyuk A., Tsukamoto A., Itoh A., Rasing Th. All-Optical Magnetic Recording with Circularly Polarized Light // PRL. 2007. V. 99. 047601.
  14. Firsova N.Yu., Mishina E.D., Sigov A.S., Senkevich S.V., Pronin I.P., Kholkin A., Bdikin I., Yuzyuk Yu.I. Femtosecond Infrared Laser Annealing of PZT Films on a Metal Substrate // Ferroelectrics. 2012. V. 433. N. 1. P. 164-169.
  15. Bdikin I.K., Bystrov V.S., S. Kopyl , Rui P G Lopes , Delgadillo I., Gracio J., Mishina E. D., Sigov A.S. Evidence of Ferroelectricity and phase transition in pressed diphenylalanine peptide nanotubes // Appl. Phys. Lett. 2012. V. 100. 043702.