350 rub
Journal №3 for 2012 г.
Article in number:
Nonlinear magnetoelectric effect in multiferroic nanostructure TbCo/FeCo-aln in high frequency electromagnetic field
Authors:
Yu. Ignatov - IEMN, UMR CNRS 8520, PRES Lille Nord de France, ECLille, 59651 Villeneuve d-Ascq, France. E-mail: yannick.dusch@centraliens-lille.org
A.A. Klimov - IEMN, UMR CNRS 8520, PRES Lille Nord de France, ECLille, 59651 Villeneuve d-Ascq, France. E-mail: yannick.dusch@centraliens-lille.org
N. Tiercelin - V.A. Kotelnikov Institute of Radioengineering and Electronics, 125009 Moscow, Russia. E-mail: nicolas.tiercelin@iemn.univ-lille1.fr
A. Talbi - IEMN, UMR CNRS 8520, PRES Lille Nord de France, ECLille, 59651 Villeneuve d-Ascq, France. E-mail: yannick.dusch@centraliens-lille.org
S. Nikitov - V.A. Kotelnikov Institute of Radioengineering and Electronics, 125009 Moscow, Russia
P. Pernod - IEMN, UMR CNRS 8520, PRES Lille Nord de France, ECLille, 59651 Villeneuve d-Ascq, France. E-mail: yannick.dusch@centraliens-lille.org
V. Preobrazhensky - IEMN, UMR CNRS 8520, PRES Lille Nord de France, ECLille, 59651 Villeneuve d-Ascq, France. E-mail: yannick.dusch@centraliens-lille.org
Abstract:
The nonlinear magnetoelectric effect in the stress mediated nanocomposite multiferroic TbCo/FeCo-AlN with uniaxial magnetic anisotropy deposited on Si substrate is studied in the 0,5-2 GHz frequency range. High frequency (HF) electromagnetic field was modulated at the resonance frequency 843 Hz of the fundamental flexural mode of mechanical vibrations of the structure. Magnetoelectric tension induced in the structure by HF excitation was measured as a function of static magnetizing field. The increase of the energy conversion efficiency in the vicinity of spin reorientation transition (SRT) is demonstrated. The theory of nonlinear resonance magnetoelectric effect in thin film composite multiferroic is developed and applied for description of the experimental results.
Pages: 28-35
References
  1. Fiebig M. // J. Phys. 2005. D 38. R123.
  2. Spaldin N.A. and Fiebig M.// Science.2005. 309. 391.
  3. Tiercelin N., Preobrazhensky V., Pernod P., Ostachenko A. // App. Phys. Lett. 2008. 92. 062904.
  4. Dubois M.-A., Muralt P.// Appl. Phys. Lett. 1999. 74. 3032.
  5. White C.D., Piazza G., Stephanou P.J., Pisano A.P.// Sensors & Actuators: A. Physical.2007. 134 (1). Р.239-244.
  6. Tiercelin N., Talbi A., Preobrazhensky V., Pernod P., Mortet V., Haenen K., Soltani A.//App. Phys. Lett. 2008. 93. 162902.
  7. Tiercelin N., Preobrazhensky V., Mortet V., Talbi A., Soltani A., Haenen K., Pernod P. // JMMM 321. 2009. Р. 1803-1807.
  8. Bichurin M.I., Filippov D.A., Petrov V.M., Laletsin V.M., Paddubnaya N., Srinivasan G. // Phys. Rev. B. 2003. 68. 132408.
  9. Henry Greve, Eric Woltermann, Hans-Joachim Quenzer, Bernhard Wagner, and Eckhard Quandt// Appl. Phys. Lett. 2010. 96. 182501.
  10. Fetisov Y.K. and Srinivasan G. // Appl. Phys. Lett. 2005. 87. 103502 (2005); Electron. Lett. 41. 1066.
  11. Ustinov A.B., Srinivasan G., and Fetisov Yuri K.// J. Appl. Phys. 2008. 103. 063901.
  12. Benatmane N., Crane S.P., Zavaliche F., Ramesh R., and Clinton T.W.// Appl. Phys. Lett. 2010. 96. 082503.
  13. Bichurin M.I.,Petrov V.M., Averkin S.V., Liverts E. //J. Appl. Phys. 2010. 107. 053905.
  14. Weiler E.M., Dreher L., Heeg C., Huebl H., Gross R., Brandt M.S., Groennenwein S.T.B.// Phys. Rev. Lett. 2011. 106. 117601.
  15. Klimov A., Ignatov Yu., Tiercelin N., Preobrazhensky V., Pernod P., Nikitov S.// J. Appl. Phys. 2010. 107 (8).
  16. du Trémolet de Lacheisserie E. and Peuzin J.C.// J. Magn. Magn. Mater. 1994. 136. 189.
  17. Gurevich A.G. and Melkov G.A. Magnetic Oscillations and Waves. Moscow. Nauka. 1994; New York. CRC. 1996.
  18. Kittel C.// Phys. Rev. 1956. 110. 836.
  19. Ahieser A.I., Bar-yahtar V.G., Peletminskiy S.V. Spin Waves.Moscow.Nauka Press. 1967.
  20. Landau L.D. and Lifshitz E.M. Theory of Elasticity. First ed. London.Pergamon Press Ltd. 1959.
  21. Torby B.J.Advanced Dynamics for Engineers. Holt, Rinehart, and Winston. 1984.
  22. Heinrich B., Urban R., and Woltersdorf G.// J. Appl. Phys. 2002. 91. 7523.
  23. Mason W.P. Physical Acoustics and the Properties of Solids. New Jersey. Princeton. 1958.
  24. Lueng C.M., Chan H.L.W., Surya C., Choy C.L. // J. Appl. Phys. 2000. 88 (9).Р. 5360-5363.
  25. Vasilevskaya T.M. and Sementsov D.I.// Phys. of the Solid State.2010. 52. 6. Р. 1210-1216.
  26. Kaganov M.I.// JETP Lett. 1969. 10. Р. 336-340.