350 rub
Journal №2 for 2012 г.
Article in number:
Features of electrical properties of nanoporous silica films
Authors:
A.S. Vishnevskiy, P.P. Lavrov, D.S. Seregin
Abstract:
The results of the ellipsometric and electrophysical investigations of nanoporous silica thin films of two types having different presence of the methyl group in the silica matrix have been studied in this work. The films were formed on a silicon substrate by the spin-coating of the sol-gel solution. The pore structure in the films was formed by the imprinting method using the surface active agent (commercial name is Brij-30). The efficiency of the methyl modification of the films has been shown which leads to decrease the amount of the adsorbed water and to stabilize the electrophysical properties. The upper limit of the concentration of Brij-30 in the coating solution to form homogeneous films has been experimentally determined to be 75 wt%. The dielectric constant and the refractive index are decreasing practically linearly with increasing concentration of the porogen in the coating solution within the limits from 0 to 75 wt%. The increase of the content of Brij-30 up to 75 wt% allows us to decrease ε from 3,5 to 2 after annealing at 350 °С and from 3,2 to 1,8 after annealing at 400 °С and to decrease n from 1,375 to 1,171 and from 1,363 to 1,172 respectively.
Pages: 13-20
References
  1. Baklanov M.R., Maex K. Porous low dielectric constant materials for microelectronics // Philosophical Transactions of The Royal Society Series A. 2006. V. 364. № 1838. P. 201-215.
  2. Jeong H.-K., Chandrasekharan R., Chu K.-L. et al. Rapid thermal processing of mesoporous silica films: a simple method to fabricate films micrometers thick for microelectromechanical systems (MEMS) applications // Industrial and Engineering Chemistry Research. 2005. V. 44/ P. 8933-8937.
  3. Gacoin T., Besson S., Boilot J.P. Organized mesoporous silica films as templates for the elaboration of organized nanoparticle networks // Journal of Physics: Condensed Matter. 2006. V. 18. P. S85-S95.
  4. Semiconductor Industrial Association. The International Technology Roadmap For Semiconductors // http://www.itrs.net/reports.html
  5. Whitesell H.,Hollar E., Yim K.S., et al. Nano-porous dielectrics and copper barriers for 28nm and below // Solid State Technology. 2011. V. 54. № 5. P. 12-14.
  6. Jousseaume V., Cornec C., Ciaramella F., et al.PECVD versus spin-on to perform porous ULK for advanced interconnects: chemical composition, porosity and mechanical behavior // Materials Research Society Symposium Proceeding. 2006. V. 914. P. 0914-F04-06.
  7. Hatton B.D., Landskron K. et al. Materials chemistry for low-k materials // Materials Today. 2006. V. 9, № 3. P. 22-31.
  8. Favennec L., Jousseaume V., Rouessac V., et al.Ultra low k PECVD porogen approach: matrix precursors comparison and porogen removal treatment study // Materials Research Society Symposium Proceeding. 2005. V. 863. P. B.3.2.1-B.3.2.6.
  9. Gates S., Neumayer D., Sherwood M., et al. Preparation and structure of porous dielectrics by plasma enhanced chemical vapor deposition // Journal of applied physics. 2007. V. 101. P. 094103-094103-8.
  10. Grill A., Patel V., Gates S. Multiphase low dielectric constant material // Патент США № 6,312,793 B1. 2001.
  11. Favennec L., Jousseaume V., Rouessac V., et al. Porous extreme low k (ELk) dielectrics using a PECVD porogen approach // Materials Science in Semiconductor Processing. 2004. V. 7. P. 277-282.
  12. Han S.-S., Bae B.-S. Deposition of fluorinated amorphous carbon thin films with low dielectric constant and thermal stability // Materials Research Society Symposium Proceeding. 2000. V. 612. P. D.5.6.1-D.5.6.7.
  13. Siew Y.K., Sarkar G., Hu X., et al. Low dielectric constant porous silsesquioxane films: effect of thermal treatment // Materials Research Society Symposium Proceedings. 2000. V. 612, P. D5.15.1-D5.15.6.
  14. Nguyen C.V., Carter K.R., Hawker C.J., et al. Low-dielectric, nanoporous organosilicate films prepared via in organic/organic polymer hybrid templates // Chemistry of Materials. 1999. V. 11. P. 3080-3085.
  15. Kohl A.T., Mimna R., Shick R., Rhodes L., Wang Z.L, Kohla P.A. Low k, porous methyl silsesquioxane and spin-on-glass // Electrochemical and Solid-State Letters. 1999. V. 2. № 2. P. 77-79.
  16. Lee B., Park Y., et al. Ultra low - nanoporous organosilicate dielectric films imprinted with dendric spheres // Nature Materials. 2005. V. 4. P. 147-151.
  17. Yim J.-H. Functional polymers for semiconductor applications // http://www.cheric.org/ippage/e/ipdata/2006/01/file/e200601-601.pdf
  18. Grosso D., Cagnol F. et al. Fundamentals of mesostructuring through evaporation-induced self-assembly // Advanced Functional Materials. 2004. V. 14. № 4. P. 309-322.
  19. Sanchez C., Boissière C., Grosso D., et al. Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity // Chemistry of Materials. 2008. V. 20. P. 682-737.
  20. Theije F.K., Balkenende A.R., Verheijen M.A., Bakla-nov M.R., Mogilnikov K.P., Furukawa Y. Structural characterization of mesoporous organosilica films for ultralow-k dielectrics // Physical Chemistry B. 2003. V. 107. P. 4280-4289.
  21. Matheron M., et al. Highly ordered CTAB-templated organosilicate films // Materials Chemistry. 2005. V. 15. P. 4741-4745.
  22. Jousseaume V., Favennec L., Zenasni A., Gourhant O. Porous ultra low k deposited by PECVD: from deposition to material properties // Surface and Coatings Technology. 2007. V. 201. P. 9248-9251.
  23. Васильев В.А., Серегин Д.С., Воротилов К.А. Нанопористые силикатные пленки, сформированные золь-гель методом // Наноматериалы и наноструктуры. 2011. T. 2. № 3. C. 34-42.
  24. Фрелих Г. Теория диэлектриков: пер. с англ. М.: И.Л., 1960.