350 rub
Journal №3 for 2011 г.
Article in number:
Diagnostics of nanosized ferroelectric films on semiconductor and dielectric substrates using RBS-spectroscopy method
Authors:
M.S. Afanas-ev, V.K. Egorov, G.V. Chucheva, P.A. Lychnikov, A.V. Byrov
Abstract:
Peculiarities of Rutherford backscattering (RBS) are presented. It is shown that RBS-spectroscopy is most effective for the analysis of BSTO films on magnesium oxide substrates. Ba1-xSrxTiO3 films on various substrates are analyzed by RBS method. Using ion-beam diagnostics comparative studies are conducted of Ba1-xSrxTiO3 (BSTO) films 20-140 nm thick on single-crystal substrates Si (100), MgO (100) and NdGaO3 (100). Profiles of distribution of structure-forming concentration elements according to film thickness are obtained. Model distributions of elements in films in the form of sandwich sequence are analyzed which correspond to theoretical RBS spectrum. The thickness of nanosized ferroelectric films on the substrates is defined, the level of their element heterogeneity depending on film thickness is determined, and also the extend of their diffusive impurity caused by substrate atoms is established. It is found that then perovskite films are deposited on silicon and magnesium oxide substrates, active diffusion penetration of substrate atoms into a film surface is observed. In the process of deposition, a buffer oxide layer has appeared on the surface Si substrate which allowed the subsequent deposition of Ba1-xSrxTiO3 film. It is shown that the RBS-spectroscopy is most effective for the analysis of BSTO films on a magnesium oxide substrate, and the reliability of results of studies by this method essentially depends on the relation between structure-forming element numbers in films and substrates
Pages: 50-57
References
  1. Shigetani H., Kobayashi K., Fujimoto M., Sugimura W., Matsui Y., Tanaka J. BaTiO3 thin films grown on SrTiO3 substrates by a molecular-beam-epitaxy method using oxygen radicals // J. Appl. Phys. 1997. V. 81. P. 693.
  2. Kaernmer K., Huelz H., Holzapfer B., Haessler W., Schultz L. Electrode influence on the polarization properties of BaTiO3 thin films prepared by off-axis laser deposition // J. Phys. D, Appl. Phys. 1997. V. 30. P. 522-526.
  3. Iijima K., Terashima T., Yamamoto K., Hirata K., Bando Y. Preparation of ferroelectric BaTiO3 thin films by activated reactive evaporation // J. Appl. Phys. Let. 1990. V. 56. P. 527-530.
  4. Hakazawa H., Yamane H. Hirai T. Metalorganic Chemical Vapor Deposition of BaTiO3 Films on MgO(100) // Jpn. J. Appl. Phys. 1991. V. 30. P. 2200-2203.
  5. Granicher H., Jakits O. // Nuovo Cimento Suppl. 1954. V. 11. P. 480.
  6. Chu W.K., Mayer J.M., Nikolet M.A. Backscattering Spectrometry. New York: Academic Press. 1978.
  7. Комаров Ф.Ф., Кумахов М.А., Ташлыков И.С. Неразрушающий анализ поверхностей твердых тел ионными пучками. Минск: Университетское. 1987.
  8. Doolittle L.R. Algorithm for the rapid simulation of Rutherford Backscattering spectra // NIM. B9. 1985. P. 344-351.
  9. Bird J.R., Wiiliams J.S. Ion beams for material analysis. Sidney: Academic Press. 1989.
  10. Егоров В.К., Егоров Е.В. Ионопучковые методы неразрушающего количественного контроля наноструктур // Материалы 10-й Междунар. НТК «Высокие технологии в промышленности России». М.: Техномаш. 2004. С. 82-103.
  11. Новицкий П.В., Зограф И.А. Оценка погрешностей результатов измерений. Л.: Энергоатомиздат. 1991.
  12. Klockenkamper R. Total Reflection X-ray fluorescence analysis. New York: Wiley. 1997.
  13. Егоров В.К., Егоров Е.В. Афанасьев М.С. Сравнительный анализ эффективности метода РФА ПВО в условиях применения волноводно-резонансного и щелевого формирователей потока возбуждения // Поверхность (рентг., синх., нейтр. исследования). 2008. № 11. С. 34-44.