350 rub
Journal №1 for 2011 г.
Article in number:
Electronic structure of ion-modified materials. Part 1: Semiconductor systems
Authors:
D.А. Zatsepin, A.S. Sigov, E.Z. Kurmaev
Abstract:
The silicon-based materials of semiconducting and insulating type are considered to be most promising for technical applications as they allow varying purposefully an electrical and thermal conductivity, microhardness, the quantum yield of luminescence, chemical reactivity and etc. by means of introducing the impurity atoms into the lattice, including transition metals. The greatest efficiency from this point of view has a method of ion implantation, which has no restrictions on the solubility limit of an element that has been introduced, provides the high controllability of the impurities distribution within the bulk of material-target at a relatively weak effect of thermodynamic constraints on the implementation process, and, finally, combines the simultaneous formation of an ion and defect complexes in a single implantation cycle. The latter opens up an additional application area for an ion implantation method, the so-called "defects engineering". The advantages of the ion implantation method demonstrate its powerful capabilities and indicate the possibility of the successful adaptation to the technology of nanoelectronics in order to create nanocomposite materials with a special combination of physical and chemical properties. In the current part of our review the physical principles and mechanisms that govern the behavior of electrons in semiconducting and insulating structures with a low- dimensionality are analyzed and discussed, their relationship with the function of electronic density of states and the quantization energy of electrons in potential wells of various types are noted and, finally, the spatial classification of semiconductor structures with a reduced dimensionality is performed
Pages: 3-16
References
  1. Isawa Y., Suwa F. Transport trough Discrete Energy Levels in Quantum Dots // Jap. J. Appl. Phys. 1995. V.34. Р. 4492-4495.
  2. Haberland H. Clusters of atoms and molecules. Heidelberg: Springer-Verlag. Berlin. 1994. 440 p.
  3. Prigogin I., Rice S.A. Evolution of size effects in chemical dynamics // Adv.Chem. Phys. 1998. V. 70. Рt. 2. Р. 75-138.
  4. Сергеев Г.Б. Нанохимия. М.: МГУ. 2003. 288 c.
  5. Помогайло А.Д., Розенберг А.С., Уфлянд А.С. Наночастицы металлов в полимерах. М.: Химия. 2000. 672 c.
  6. Петров Ю.И. Кластеры и малые частицы. М.: Наука. 1986. 235 c.
  7. Губин C.П. Химия нанокластеров. М.: Наука. 1987. 262 c.
  8. Суздалев И.П. Физико-химия нанокластеров, наноструктур и наноматериалов. М.: Комкнига. 2006. 592 c.
  9. Alivisatos A.P. Semiconductor Clusters, Nanocrystals, and Quantum Dots // Science. 1996. V. 271. Р. 933-937.
  10. Пул Ч., Оуэнс Ф. Нанотехнологии. М.: РИЦ Техносфера. 2004. 330 c.
  11. Мартинес-Дуарт Дж.М., Мартин-Палма Р.Дж., Агулло-Руеда Ф. Нанотехнологии для микро- и оптоэлектроники. М.: РИЦ Техносфера. 2007. 368 c.
  12. Бондарев В.М., Тарасевич Д.В. Статистическая теория фазового равновесия кристалл-газ: роль квантовых эффектов // Физика твердого тела. 2007. Т. 49. Вып. 1. С. 131135.
  13. Fox A.M. Optoelectronics in quantum well structures // Contemporary Physics. 1996. V. 37. Is. 2. Р.111-125.
  14. Murray C.B., Kagan C.R., Bawendi M.G. Synthesis and Characterization of Monodisperse Nanocreystals and Close-packed Nanocrystal Assemblies // Annual Review of Material Science. 2000. V. 30. Р. 545-610.
  15. Matsuoka H., Kimura S. Transport Properties of a Silicon Single-Electron Transistor at 4.2K // Appl. Phys. Lett. 1995. V. 66. P. 613-615.
  16. Matsuoka H., Ahmed H., Transport Properties of Two Quantum Dots Connected in Series Formed in Silicon Inversion Layers // Japan. J. Appl. Phys. 1996. V. 35. Р. L418-L420.
  17. Likharev K.K. Correlated Discrete Transfer of Single Electrons in Ultrasmall Tunnel Junctions // IBM Journal. Res. and Develop. 1988. V. 32. P. 144-158.
  18. Geerligs L.J. Physics of Nanostructures. Cambridge: Univ. Press. 1992. 172 p.
  19. Питер Ю., Кардона М. Основы физики полупроводников. М.: Физматлит. 2002. 560 c.
  20. Герасименко Н., Пархоменко Ю. Кремний - материал наноэлектроники. М.: РИЦ Техносфера. 2007. 351 с.
  21. Berger R. A Note on the Li-Cu-O System // J. Less-Common Met. 1991. V. 169. Р. 33-43.
  22. Мейер Дж., Эриксон Л., Дэвис Дж. Ионное легирование полупроводников. М.: Мир. 1973. 296c.
  23. Sigmund P. A Mechanism of Surface Micro-Roughening by Ion Bombardment // J. Mater. Sci. 1973. V. 8. Р. 1545-1553.
  24. Bradley R.M. Harper J.M.E. Theory of Ripple Topografy Induced by Ion Bombardment // J. Vac. Sci. Technol. 1988. V. A6. Р. 2390-2395.
  25. Загидулин Ю.С., Шауцуков А.Г. Моделирование процесса радиационно-стимулированной диффузии в ионно-легированных слоях. // Нано- и Микросистемная техника. 2004. Т. 4. 2004. С. 2-16.
  26. Kahng B., Jeong H., Barabasi A.-L. Quantum Dot and Hole in Sputter Erosion // Appl. Phys. Lett. 2001. V. 7. Р. 805-807.
  27. Corbett J.W., Gerasimenko N.N., Verner I.V. Chaos and Defect Control in Semiconductors // Elsevier Sci. Publishers. Holland. 1990. 466 p.
  28. Bakai A.S., Turkin A.A. Materials of 15th Internat. Symp. On Radiation Effects in Semiconductors. 1992. V. I. 1992. Р. 709.
  29. Sugakov V.I. Materials of 14th Internat. Symp. On Radiation Effects in Semiconductors. 1989. V. II. Р. 510.
  30. Селищев П.А. Самоорганизация в радиационной физике. Киев: «Аспект полиграф». 2004. 240с.
  31. Sugakov V.I. Spinoidal Decay in a System of Unstable Particles // Solid State Communic. 1998. V. 106. No. 11. Р. 705-709.
  32. Михайловский В.В., Рассел К.С., Сугаков В.И. Образование сверхрешеток в бинарных соединениях при ядерном облучении. // Физика твердого тела. 2000. Т. 42. Вып. 3. С. 471-477.
  33. Sugakov V.I. Lectures in synergetics. World Scientific, Singapore. 1998. 207 p.
  34. Вакс В.Г., Бейден С.В. Особенности  явлений  упорядочения в открытых системах: рассмотрение модели сплава под облучением в приближении самосогласования поля // ЖЭТФ. 1994. Т. 105. Bып. 4. С. 1017-1022.
  35. Hsieh K.C., Baillargeon J.N., Cheng K.Y. Compositional Modulation and Long-range Ordering in GaP/InP Short-period Superlattices Grown by Gas Source Molecular Beam Epitaxy // Appl. Phys. Lett. 1990. V. 57. Р. 2244-2246.
  36. Ferguson I.T., Norman A.G., Joyce B.A., Seong Т-Y, Booker G.R., Thomas R.H., Phillips C.C., Stradling R.A., Joyce A.B. Molecular beam epitaxial growth of InAsSb strained layer superlattices. Can nature do it better // Appl. Phys. Lett. 1991. V. 59. Р. 3324-3326.