350 rub
Journal Information-measuring and Control Systems №5 for 2025 г.
Article in number:
Attempt to systematically construct objects to represent basic mathematical concepts in combinatorial logic
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700814-202505-03
UDC: 621.396
Authors:

R.V. Dushkin¹

¹OOO "A-Ya ekspert" (Moscow, Russia)

²National Research Nuclear University MEPhI (Moscow, Russia) ¹drv@aia.expert

Abstract:

This paper proposes a systematic approach to constructing objects that can be used to represent basic mathematical concepts in combinatorial logic. In particular, we explore the use of Church numerals to describe numeric objects and then transfer them to a general algebraic structure. We also consider the possibility of expanding the object base by proposing methods for representing them using combinators of integer, rational, and complex numbers. The results of this study can be used to develop more accurate models and improve the processes of representing objects and logical inference on them within combinatorial logic. The overall goal of the paper is to propose a method for constructing objects to represent basic mathematical concepts in combinatorial logic, which can help in solving many mathematical problems. The method presented in this paper can also be used in other areas of mathematics and computer science where representation of mathematical objects is necessary. The novelty of this work lies in proposing a systematic and flexible method for constructing objects that allows representing basic mathematical concepts in combinatorial logic and can be used in other areas of mathematics and computer science. Furthermore, the method allows for expanding the object base, making it more universal and applicable in various contexts. The relevance of this article lies in the fact that combinatorial logic, as metamathematics, plays an important role in solving mathematical problems and in computer science research. This article will be useful and interesting to researchers and specialists in the fields of metamathematics, combinatorial logic, applied mathematics, and computer science. It can also be used for educational purposes, teaching undergraduate and graduate students the fundamentals of combinatorial logic and metamathematics.

Pages: 26-40
For citation

Dushkin R.V. Attempt to systematically construct objects to represent basic mathematical concepts in combinatorial logic. Informationmeasuring and Control Systems. 2025. V. 23. № 5. P. 26−40. DOI: https://doi.org/10.18127/j20700814-202505-03 (in Russian)

 

References
  1. Volfengagen V.E. Kombinatornaya logika v programmirovanii. Vychisleniya s ob'ektami v primerakh i zadachakh. M.: Institut Aktualnogo Obrazovaniya "YurInfoR-MGU". 2000. 208 s. (in Russian)
  2. Schönfinkel M. Über die Bausteine der mathematischen Logik. Mathematische Annalen. 1924. 92. P. 305−316.
  3. Curry H.B. Functionality in combinatory logic. Proc. National Academy of Sciences of the USA. 1934. V. 20. P. 584−590.
  4. Kuzichev A.S. Kombinatornaya logika. Novaya filosofskaya entsiklopediya. V 4 tomakh. Pred. nauch.-red. soveta V.S. Stepin. Izd. 2-e, ispr. i dop. M.: Mysl. 2010. 2816 s. (in Russian)
  5. Fild A., Kharrison P. Funktsionalnoe programmirovanie (Functional Programming). M.: Mir. 1993. 637 s. ISBN 5-03-001870-0. (in Russian)
  6. Cardone F., Hindley J.R. History of lambda calculus and combinators. Handbook of the History of Logic. Eds. D.M. Gabbay, J. Woods. 2011. V. 5.
  7. Barendregt H.P. The Lambda Calculus, Its Syntax and Semantics. Studies in Logic and the Foundations of Mathematics (North Holland). 1984. V. 103. ISBN 0-444-87508-5.
  8. Hindley J.R., Seldin J.P. λ-calculus and Combinators: An Introduction. Cambridge University Press. 2008.
  9. Wolfram S. Combinators: A Centennial View. Wolfram Media. 2021. ISBN 978-1-57955-043-1. eISBN 978-1-57955-044-8. A celebration of the development of combinators, a hundred years after they were introduced by Moses Schönfinkel in 1920.
  10. Paulson L.C. Foundations of Functional Programming. University of Cambridge. 1995.
  11. Curry H.B., Hindley J.R., Seldin J.P. Combinatory Logic. Vol. II. Amsterdam: North Holland. 1972. ISBN 0-7204-2208-6. 12. Dushkin R.V. Kombinatory? Eto prosto!. Zhurnal "Potentsial". 2006. № 7 (19). S. 54−64. ISSN 1814-6422. (in Russian)
  12. Quine W.V. Variables explained away. Proceedings of the American Philosophical Society. 1960. 104 (3): 343−347. JSTOR 985250.
  13. Curry H.B., Feys R. Combinatory Logic. Vol. I. Amsterdam: North Holland. 1958. ISBN 0-7204-2208-6.
  14. Dushkin R.V. Funktsionalnoe programmirovanie na yazyke Haskell. Gl. red. D.A. Movchan. M.: DMK Press. 2008. 544 s. ISBN 5-94074-335-8. (in Russian)
  15. Jansen J.M. Programming in the λ-Calculus: From Church to Scott and Back. LNCS: journal. 2013. V. 8106. P. 168−180. DOI: 10.1007/978-3-642-40355-2_12.
  16. Tromp J. Binary Lambda Calculus and Combinatory Logic. Randomness And Complexity. From Leibniz To Chaitin. Calude, Cristian S. World Scientific. 2007. P. 237−262. ISBN 978-981-4474-39-9.
  17. Church A. The Calculi of Lambda-Conversion. Princeton: Princeton University Press. 1941. ISBN 978-0-691-08394-0.
  18. Peano G. Formulario Mathematico. Edition V. Turin, Bocca frères, Ch. Clausen. 1908 (1960). P. 27.
  19. MacLane S., Birkhoff G. Algebra. Edition 2. AMS Chelsea. 1999. ISBN 978-0-8218-1646-2.
  20. Cardelli L., Wegner P. On understanding types, data abstraction, and polymorphism. ACM Computing Surveys. 1985. 17 (4): P. 471−523. 22. MakLein S. Kategorii dlya rabotayushchego matematika. M.: Fizmatlit. 2004. (in Russian)
Date of receipt: 21.08.2025
Approved after review: 04.09.2025
Accepted for publication: 22.09.2025