350 rub
Journal Information-measuring and Control Systems №4 for 2025 г.
Article in number:
Software for automatic converters in technical eddy current testing of products with complex geometric shapes
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700814-202504-04
UDC: 620.179.119
Authors:

M.S. Gubin1

1 Saint-Petersburg State University of Aerospace Instrumentation (St. Petersburg, Russia)

1 gubin.maxim@mail.ru

Abstract:

The article discusses automated eddy current quality control of coating products of complex geometric shape with automatic positioning of the eddy current transducer relative to a curved surface based on feedback. The control method is an amplitude method based on a parametric converter. The impedance acts as an informative parameter. The paper considers the physical foundations of eddy current control, develops an algorithm for controlling the spatial location of the transducer relative to the surface of products of complex geometric shape, and tests the algorithm as part of a robotic nondestructive testing complex.

When monitoring the parameters of defects on curved surfaces, special attention should be paid to the location of the transducer relative to the surface, the use of modern robotic systems, including means of positioning the transducers, allows you to solve the tasks, but their use is limited by outdated software, which is based on a rigidly defined program, as a result, the measured parameters depend on the maximum deviations of the geometry, the positioning errors of the transducer, etc. this makes it impossible to identify defects with minimal disclosure values. The aim of article is to increase the reliability of non-destructive quality control of the ISGF coating by using an algorithm for controlling the spatial location of the converter based on feedback as part of a robotic complex. In the course of the research, an algorithm for controlling the spatial location of the VTP based on feedback was developed. The developed algorithm is used as part of robotic nondestructive testing systems for positioning high-power equipment relative to curved surfaces.

Pages: 28-35
For citation

Gubin M.S. Software for automatic converters in technical eddy current testing of products with complex geometric shapes. Information-measuring and Control Systems. 2025. V. 23. № 4. P. 28−35. DOI: https://doi.org/10.18127/j20700814-202504-04 (in Russian)

References
  1. Dobrovolskii M.V. Zhidkostnye raketnye dvigateli. Osnovy proektirovaniya: Uchebnik dlya vysshikh uchebnykh zavedenii. Pod red. D.A. Yagodnikova. Izd. 3-e, dop. M.: MGTU im. N.E. Baumana. 2016. 461 s. (in Russian)
  2. Borisov V.A. Konstruirovanie osnovnykh uzlov i sistem raketnykh dvigatelei: elektron: Ucheb. posobie. SGAU. 2010. (in Russian)
  3. GOST 27.002-2015. Nadezhnost v tekhnike. Terminy i opredeleniya. M.: Standartinform. 2017. 4 s. (in Russian)
  4. Yagodnikov Dmitrii Alekseevich, Aleksandrenkov Vladislav Petrovich, Vlasov Yurii Nikolaevich, Voronetskii Andrei Vladimirovich, Tomak Viktor Ivanovich, Rumyantsev Boris Vasilevich. Aktualnye problemy raketnogo dvigatelestroeniya. Moskovskii gosudarstvennyi tekhnicheskii universitet im. Baumana. (in Russian)
  5. GOST 21014-2022. Metalloproduktsiya iz stali i splavov. Defekty poverkhnosti. Terminy i opredeleniya. M.: Standartinform. 2019. 102 s. (in Russian)
  6. GOST R 56542-2019. Kontrol nerazrushayushchii. Klassifikatsiya vidov i metodov M.: Standartinform. 2019. 9 s. (in Russian)
  7. GOST R ISO 15549-2009. Kontrol nerazrushayushchii. Kontrol vikhretokovyi. Osnovnye polozheniya. M.: Standartinform. 2009. 7 s. (in Russian)
  8. Korytin A.M., Petrov N.K., Radimov S.N., Shaparev N.K. Avtomatizatsiya tipovykh tekhnologicheskikh protsessov i ustanovok: Uchebnik dlya vuzov. Energoatomizdat. 1988. 42 s. (in Russian)
  9. Ganzen M.I. Robotizirovannyi vikhretokovyi kontrol detalei GTD s ispolzovaniem neironnykh setei. Vestnik RGATA imeni P.A. Soloveva. Rybinsk: 2019. S. 65−70. (in Russian)
  10. Glazunova V.A., Kheilo S.V. Novye mekhanizmy robototekhnicheskikh i izmeritelnykh sistem M.: Tekhnosfera. 2022. 244 s. (in Russian)
  11. Sergeev D.S., Barinov A.V., Kinzhagulov I.Yu., Smirnov A.A., Stepanova K.A., Kaloshin V.A., Perfilov A.M., Machikhin A.S. Avtomatizirovannyi kompleks kontrolya tolshchiny tekhnologicheskikh pokrytii elementov ZhRD. Sb. trudov NPO Energomash. 2016. № 32. S. 275−288. (in Russian)
  12. Nerazrushayushchii kontrol: Spravochnik. Pod red. V.V. Klyueva. V 7‑mi tomakh. T. 2. V 2‑kh knigakh. Kn. 1: Kontrol germetichnosti. Kn. 2: Vikhretokovyi kontrol. M.: Mashinostroenie. 2003. 688 s. (in Russian)
  13. Gubin M.S. Influence of the spatial location of a parametric eddy current sensor relative to the surface of a controlled product of complex geometric shape on the measured values. Information-measuring and Control Systems. 2025. V. 23. № 4. P. 28−35. DOI: https://doi.org/10.18127/j20700814-202504-04 (in Russian)
Date of receipt: 29.07.2025
Approved after review: 14.08.2025
Accepted for publication: 28.08.2025