
A.S. Bogdanov1, V.A. Shevtcov2
1,2 Moscow Aviation Institute (National Research University) (Moscow, Russia)
1a.bogdanov@kaf408.ru, 2shevtsovva@mai.ru
The article discusses the issues of handover in integrated communication and navigation networks using the subsystem for the formation of a local radio navigation field. The construction of an integrated network is carried out by supplementing the existing communication network with sources of radio navigation signal that form a local radio navigation field. Radio navigation signal sources are installed both within the communication network service area and outside it. The proposed handover algorithm consists in installing sources of radio navigation signals in the coverage area of the mobile communication network, forming a local radio navigation field. The mobile station analyzes the signals, determines its location and, using a digital map of the area, independently selects a serving base station. Based on the selection made, a decision is made to transfer service. The choice of service area is made by determining whether a mobile station belongs to a particular zone of a digital map of the area using a developed algorithm for determining membership. It is proposed to represent the service area in the form of a convex polyhedron of arbitrary shape. Before handover occurs, the system predicts the most likely handover area by estimating the distance to the planes that limit the space of the base station service area. The result of the work is the development of a mobile communication network architecture, a handover algorithm, a method for determining whether a mobile station belongs to a certain area of a digital terrain map, a format for presenting a digital terrain map, and a method for predicting the most likely handover zone. The practical significance of the proposed solution is to reduce the load on the mobile communication network due to the reduction of service traffic generated by the network during the implementation of the handover procedure, to increase the survivability of the system by ensuring its operability in the absence of GNSS signals and high energy characteristics of the generated local radio navigation field, and to reduce service transfer time.
Bogdanov A.S., Shevtcov V.A. Handover in mobile networks using local radio navigation field. Information-measuring and Control Systems. 2024. V. 22. № 6. P. 32−43. DOI: https://doi.org/10.18127/j20700814-202406-04 (in Russian)
- Gromakov Yu.A. Standarty i sistemy podvizhnoi radiosvyazi. M.: Mobilnye telesistemy: Eko-Trendz. 1997. 240 s. (in Russian)
- Peter Hammarberg, Julia Vinogradova. Architecture, Protocols and Algorithms for Location-Aware Services in Beyond 5G Networks. Cornell University. 2022. URL: https://arxiv.org/pdf/2211.14781.pdf Access date: 27.02.2024.
- Maan M Abdulwahid, Oras A Shareef Al-Ani. Optimal access point location algorithm based real measurement for indoor communication. ACM Digital Library. URL: https://dl.acm.org/doi/10.1145/3321289.3321300 Access date: 27.02.2024.
- Junsuo Qu, Haonan Shi. New three-dimensional positioning algorithm through integrating TDOA and Newton’s method. EURASIP Journal on Wireless Communications and Networking. URL: https://jwcn-eurasipjournals.springeropen.com/articles/10.1186/s13638-020-01684-7 Access date: 27.02.2024.
- Fokin G.A. Model tekhnologii setevogo pozitsionirovaniya metrovoi tochnosti 5G NR. Chast 1. Konfiguratsiya signalov PRS. Trudy uchebnykh zavedenii svyazi. 2022. T. 8. № 2. S. 48‒63. DOI:10.31854/1813-324X-2022-8-2-48-63. (in Russian)
- Kireev A.V., Fokin G.A. Pozitsionirovanie ob'ektov v setyakh lte posredstvom izmereniya vremeni prokhozhdeniya signalov. Trudy uchebnykh zavedenii svyazi № 1. 2016. (in Russian)
- Gavrilov K.Yu., Igonina Yu.V., Linnikov O.N. Otsenka oshibok izmereniya koordinat tselei v radarakh zondirovaniya cherez stenu. Informatsionno-izmeritelnye i upravlyayushchie sistemy. 2019. T. 17. № 1. S. 46−54. (in Russian)
- Prikladnoi potrebitelskii tsentr GLONASS. URL: https://glonass-iac.ru/glonass/sostavOG/ Data obrashcheniya: 27.02.2024. (in Russian)
- GPS: The Global Positioning System. URL: https://www.gps.gov/ Access date: 27.02.2024.
- BeiDou Navigation Satellite System. URL: http://en.beidou.gov.cn/ Access date: 27.02.2024.
- Galileo GNSS. URL: https://galileognss.eu/ Access date: 27.02.2024.
- Sistemy funktsionalnykh dopolnenii GNSS. Prikladnoi potrebitelskii tsentr GLONASS. URL: https://glonass-iac.ru/guide/function_dop.php Data obrashcheniya: 27.02.2024. (in Russian)
- Fridlender G.O. Inertsialnye sistemy navigatsii. M.: Fizmatgiz. 1961. (in Russian)
- Yakushenkov A.A. Osnovy inertsialnoi navigatsii. M.: Izdatelstvo "Morskoi transport". 1963. (in Russian)
- Andreev V.D. Teoriya inertsialnoi navigatsii: Korrektiruemye sistemy. M.: Izdatelstvo "Nauka": Glavnaya redaktsiya fiziko-matematicheskoi literatury. 1967. (in Russian)
- Guattari F., Chouvin S., Moluçon C., Lefèvre "A Simple Optical Technique to Compensate for Excess RIN in a fiber-optic gyroscope". IXBlue France - Karlsruhe 2014. URL: https://ieeexplore.ieee.org/document/7049411 Access date: 27.02.2024.
- Krasilshchikov M.N., Sebryakov G.G. (red.). Sovremennye informatsionnye tekhnologii v zadachakh navigatsii i navedeniya bespilotnykh manevrennykh letatelnykh apparatov. M.: Fizmatlit. 2009. 556 s. ISBN: 978-5-9221-1168-3. (in Russian)