350 rub
Journal Information-measuring and Control Systems №4 for 2024 г.
Article in number:
Electromagnetic deformation of a high-precision radio navigation field consumers of the basins of the inland waterways of Russia
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700814-202404-06
UDC: 621.391, 629.056
Authors:

S.A. Yakushenko1, A.V. Tikhonenkova2, A.I. Satdinov3

1, 2St Petersburg State University of Aerospace Instrumentation

3Military Academy of Communications

1was16@mail.ru

Abstract:

The basins of the inland waterways of the Russian Federation are characterized by a variety of specific navigation features, the destructive effects of which significantly affect the parameters of the purpose of radio navigation systems. Therefore, the task arises to develop a model and estimate the electromagnetic deformation of the high-precision radio navigation field in the basins of the inland waterways of Russia caused by their navigational features. The study and identification of the general navigational features of the basins of the inland waterways of Russia and the assessment of the degree of influence of their destabilizing factors on the quality indicators of the high-precision radio navigation field.

New navigation features have been identified in the basins of the inland waterways of Russia, the destructive factors of which deform the high-precision radio navigation field and reduce the quality of transmission of differential corrections. The results obtained confirm a decrease in the accuracy of positioning unmanned vessels in sections of the waterway with a complex terrain topology and electromagnetic environment. At the same time, the positioning accuracy in river basins may deteriorate in local areas from 1.6 times (from 6.8 m to 28.7 m) to 4.3 times (from 27.3 m to 117 m), depending on the electro-magnetic situation and the value of the geometry coefficient. A decrease in the quality of differential correction transmission will be manifested at the boundaries of service areas and range from 1 dB in sparsely populated areas and up to 30 dB in industrial zones. These factors will reduce the safety of navigation, so they must be taken into account when operating ships and designing functional additions to the global nav. The results obtained in the work can be used in the formation and optimization of the topology of control and correction stations of differential additions to the global navigation satellite system and to meet the requirements for the accuracy of positioning of mobile objects in difficult physical and geographical conditions of the terrain and electromagnetic environment.

Pages: 53-61
For citation

Yakushenko S.A., Tikhonenkova A.V., Satdinov A.I. Electromagnetic deformation of a high-precision radio navigation field consumers of the basins of the inland waterways of Russia. Information-measuring and Control Systems. 2024. V. 22. № 4. P. 53−61. DOI: https://doi.org/10.18127/j20700814-202404-06 (in Russian)

References
  1. Reshenie Soveta Glav Pravitelstv SNG ot 25 oktyabrya 2019 g. "Ob Osnovnykh napravleniyakh (plane) razvitiya radionavigatsii gosudarstv uchastnikov SNG na 2019−2024 g. (in Russian)
  2. Moskalenko M.A., Chernyakhovich S.E., Pushkarev I.I., Titov A.V. Tekhnologii avtonomnogo sudokhodstva, tendentsii i perspektivy. Morskie intellektualnye tekhnologii. 2023. № 1. Ch. 1 S. 18−29. (in Russian)
  3. Karetnikov V.V., Bekryashev V.A. Perspektivy kompleksirovaniya rechnykh infokommunikatsionnykh tekhnologii dlya povysheniya bezopasnosti sudokhodstva na VVP. Rechnoi transport. 2014. № 2 (67). S. 49−53. (in Russian)
  4. Frolov V.N., Sevbo V.Yu., Anufriev I.E. Tekhnologii bezekipazhnogo sudovozhdeniya. Transport Rossiiskoi Federatsii. 2018. № 4 (77). S. 17−21. (in Russian)
  5. Du Z.X., Huang P.F., Becke M. Research on International E-Navigation Practical Project and Its Inspiration. Journal of Mechanical Engineering Research and Developments. 2016. V. 39. № 2. P. 462−468. DOI: 10.7508/jmerd.2016.02.023.
  6. Titov A.V., Barkat L., Khaizaran A. Sostoyanie i perspektivy realizatsii tekhnologii e-Navigatsii. Vestnik Gosudarstvennogo universiteta morskogo i rechnogo flota imeni admirala S.O. Makarova. 2019. 11(4): 218−229. (in Russian)
  7. Yakushenko S.A., Dvornikov S.V., Snezhko V.K. Obosnovanie trebovanii k tochnosti pozitsionirovaniya bezekipazhnykh sudov. Morskoi vestnik. 2024. № 1 (89). S. 90−92. (in Russian)
  8. Yakushenko S.A., Salnikov D.V., Meshkov I.S., Frolov A.N. Prognozirovanie dostupnosti radionavigatsionnogo polya globalnykh navigatsionnykh sputnikovykh sistem pri zadannoi tochnosti mestoopredeleniya. Uspekhi sovremennoi radioelektroniki. 2018. № 12. S. 141−144. (in Russian)
  9. Vatutin S.I. Otsenka geometricheskogo faktora dlya nazemnogo potrebitelya sistemy GLONASS s vysokoellipticheskim dopolneniem. Raketno-kosmicheskoe priborostroenie i informatsionnye sistemy. 2016. T. 3. № 3. S. 12−28. (in Russian)
  10. Dolukhanov M.P. Rasprostranenie radiovoln: Uchebnik dlya vuzov. M.: Svyaz. 1972. 336 s. (in Russian)
  11. Dvornikov S.V., Vlasenko V.I. Energeticheskii raschet radiolinii voennogo naznacheniya: Ucheb. posobie. SPb.: VAS. 2020. 180 s. (in Russian)
  12. Shakhnov S.F. Pomekhozashchishchennost i ustoichivost radiolinii rechnykh differentsialnykh podsistem GNSS GLONASS/GPS. SPb.: Politekhnicheskii universitet. 2015. 170 s. (in Russian)
  13. Shakhnov S.F. Vidy industrialnykh pomekh i ikh vliyanie na radiolinii differentsialnykh podsistem rechnykh ASU dvizheniem sudov. Informatizatsiya i svyaz. 2015. № 1. S. 33−36. (in Russian)
  14. Rekomendatsii MSE R P.372. Radiopomekhi. Seriya R. Rasprostranenie radiovoln. 2016. (in Russian)
  15. RD50-723-93 (SISPR 18-1). Radiopomekhi industrialnye ot vozdushnykh linii elektroperedachi vysokovoltnogo oborudovaniya. M.: 1992. (in Russian)
Date of receipt: 24.06.2024
Approved after review: 08.07.2024
Accepted for publication: 23.07.2024