V.I. Glebov1, S.Ya. Krivolapov2
1,2 Financial University under the Government of the Russian Federation (Moscow, Russia)
1 vbiglebov@fa.ru, 2 skrivolapov@fa.ru
A generalization of the geometric distribution law is considered – the distribution law of a random variable equal to the step number in the sequence of tests according to the Bernoulli scheme, at which a series of k consecutive "successes" (k = 2, 3, …) falls for the first time. Expressions for the main probabilistic characteristics of a random variable are obtained.
Glebov V.I, Krivolapov S.Ya. Geometric distribution of the k-th order. Information-measuring and Control Systems. 2023. V. 21. № 6. P. 29−37. DOI: https://doi.org/10.18127/j20700814-202306-04 (in Russian)
- Feller V. Vvedenie v teoriyu veroyatnostei i ee prilozheniya. M.: Mir. 1984. T. 1. 528 s. (in Russian)
- Dzhonson N.L., Kots S., Kemp A. Odnomernye diskretnye raspredeleniya. M.: Binom. Laboratoriya znanii. 2014. 560 s. (in Russian)
- Philippou A.N., Muwafi A.A. Waiting for the Kth consecutive success and the Fibonacci sequence of the order K. Fibonacci Quarterly. February 1982. P. 28−32.
- Ivchenko G.I., Medvedev Yu.I. Diskretnye veroyatnostnye modeli. M.: DLENAND. 2021. 620 s. (in Russian)
- Leeuw K. de, Moore E., Shannon C., Shapiro N. Computability by Probabilistic Machines. In: Automata Studies. Ed. by C. Shannon and J. McCarthy. Princeton University Press. 1956. P. 183−212.
- Gill J. Probabilistic Turing Machines and Complexity of Computations. PhD thesis. U.C. Berkeley. 1972. P. 85−103.
- Gill J. Computational Complexity of Probabilistic Turing Machines. SIAM J. Comput. 6.4 (1977). P. 675−695.
url: http://dx.doi.org/10. 1137/0206049. - Makhnist L.P., Karimova T.I., Gladkii I.I., Rubanov V.S. Momenty raspredeleniya veroyatnostei i nekotorye tselochislennye posledovatelnosti. Vestnik Brestskogo gosudarstvennogo tekhnicheskogo universiteta. 2013. № 5. S. 54−56. (in Russian)