350 rub
Journal Information-measuring and Control Systems №4 for 2023 г.
Article in number:
Investigation of a time synchronization algorithm for a low-orbit grouping of microsatellites
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700814-202304-08
UDC: 629.783
Authors:

A. Yu. Fedorinov1, V. V. Perlyuk2

1,2 St. Petersburg State University of Aerospace Instrumentation (St. Petersburg, Russia)

1 Fedorinov.aleksey@mail.ru, 2 perlvv@mail.ru

Abstract:

A modern solution to navigation problems using satellite systems is impossible without time synchronization on satellite boards. Consideration of modern methods and approaches in the field of clock synchronization becomes the purpose of the study. The analysis will allow us to put forward a new method for solving the problem of time synchronization on satellite boards. The use of the proposed methods will improve the accuracy of the system as a whole. Time synchronization for satellites in an orbital group is important both for providing grouping management capabilities and for solving the tasks of autonomous operation of microsatellites. However, the existing time synchronization methods are not suitable for grouping of microsatellites, since they require too much “manual” control and take up too many resources from ground control systems. However, time synchronization in the grouping can be carried out autonomously in orbit by synchronizing the clocks of other satellites with the clocks of the selected satellite. To independently establish and maintain time synchronization in a group of microsatellites, we offer a compact time difference compensation system, which is a means of controlling onboard timers that dynamically adjust the satellite reference frequency in accordance with the time difference with other satellites.

Pages: 58-69
For citation

Fedorinov A.Yu., Perlyuk V.V. Investigation of a time synchronization algorithm for a low-orbit grouping of microsatellites. Information-measuring and Control Systems. 2023. V. 21. № 4. P. 58−69. DOI: https://doi.org/10.18127/j20700814-202304-08 (in Russian)

References
  1. Yang Yu, Xu Ya, Li J., Yang Ch. Progress and performance evaluation of the BeiDou global navigation satellite system: data analysis based on the BDS-3 demonstration system. Science China. Earth Sciences. 2018. V. 61. № 5. P. 614–624.
  2. Huang F., Chen Ya., Li T., et al. Analysis and correction to the influence of satellite motion on the measurement of inter-satellite two-way clock offset. EURASIP Journal on Wireless Communications and Networking. 2019. № 3. DOI: https://doi.org/10.1186/s13638-018-1333-9.
  3. Bo H., Xiulin H. Inter-satellite ranging and time synchronization technique for BD2. Journal of Astronautics. 2011. V 32. № 6. P. 1271–1275.
  4. Feijiang H., Xiaochun L., Guankang L., Lipin S., Wenxi Z., Cheng Yu. An algorithm for dynamic satellite-ground two-way time synchronization and ranging. Journal of Astronautics. 2014. V. 35. № 9. P. 1050–1057.
  5. Hongchun L., Xiaochun L., Jianfeng W. A method of two-way satellite-ground time synchronization under inter-satellite links system. Journal of Astronautics. 2017. V. 38. № 7. P. 728–734.
  6. Lv B., Huang Yi., Li T., et al. Simulation and performance analysis of the IEEE1588 PTP with Kalman filtering in multi-hop wireless sensor networks. Journal of Networks. 2014. V. 9. № 12. P. 3445–3453.
  7. Wolf R. Satellite orbit and ephemeris determination using inter satellite links. Dissertation. Munich. 2000 [Electronic resource]. URL: https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.137.8834&rep=rep1&type=pdf (accessed 02.05.2023).
  8. Xingyu Z., Hua C., Xiangdong A. Analysis of Galileo signal quality and positioning performance. Gnss World of China. 2018. V. 43. № 1. P. 19–24.
  9. Goodarzi M., Cvetkovski D., Maletic N., et al. Synchronization in 5G networks: a hybrid Bayesian approach toward clock offset/skew estimation and its impact on localization. EURASIP Journal on Wireless Communications and Networking. 2021. № 91. DOI: https://doi.org/ 10.1186/s13638-021-01963-x.
  10. Tsaryuk A.V., Muratov D.S., Serenkov V.I. Sinkhronizatsiya bortovykh shkal vremeni navigatsionnykh kosmicheskikh apparatov GLONASS po vzaimnym mezhsputnikovym izmereniyam. Aktual'nye problemy aviatsii i kosmonavtiki. 2015. № 11. [Elektronnyj resurs]. URL: https://cyberleninka.ru/article/n/sinhronizatsiya-bortovyh-shkal-vremeni-navigatsionnyh-kosmicheskih-apparatov-glonass-po-vzaimnym- mezhsputnikovym-izmereniyam-2 (data obrashcheniya: 02.05.2023). (in Russian)
  11. Li B., Wu N., Wu Y.-C. Distributed verification of belief precisions convergence in Gaussian belief propagation. 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 2020. P. 9115–9119.
  12. Khan R., Khan S.U., Khan S., Khan M.U.A. Localization performance evaluation of extended Kalman filter in wireless sensors network. Procedia Computer Science. 2014. V. 32. P. 117–124.
  13. Frost Ch., Agasid E. Small spacecraft technology state of the art. NASA Technical Report TP-2014-216648/REV1. NASA Ames Research Center. 2014.
  14. Mathieu Ch., Weigel A. Assessing the flexibility provided by fractionated spacecraft. Proc. of AIAA Space Forum. 2005. V. 1. P. 1–12.
  15. Poghosyan A., Golkar A. CubeSat evolution: Analyzing CubeSat capabilities for conducting science missions. Progress in Aerospace Sciences. 2017. V. 88. P. 59–83.
  16. Gill E., Sundaramoorthy P., Bouwmeester J., et al. Formation flying within a constellation of nano-satellites: the QB50 mission. Acta Astronautica. 2013. V. 82 (1). P. 110–117.
  17. McCormick D., Barrett B., Burnside-Clapp M. Analyzing fractionated satellite architectures using RAFTIMATE: A Boeing tool for value-centric design. Proc. of AIAA SPACE Conference & Exposition. 2013. 6767. P. 1–6.
  18. D’Errico M. Distributed space missions for Earth system monitoring. New York: Microcosm Press and Springer. 2013.
  19. Shaw G.B., Miller D.W., Hastings D.E. Generalized characteristics of communication, sensing, and navigation satellite systems. Journal of Spacecraft and Rockets. 2000. V. 37. № 6. P. 801–811.
  20. Celandroni N., Ferro E., Gotta A., et al. On the applicability of reliable transport protocols in satellite delay tolerant and disruptive networks. International Journal of Satellite Communications & Networking. 2014. V. 32. № 2. P. 141–161.
  21. Wang Ch., Tang J., Cheng X., et al. Distributed cooperative task planning algorithm for multiple satellites in delayed communication environment. Journal of Systems Engineering and Electronics. 2016. V. 27. № 3. P. 619–633.
  22. Radhakrishnan R., Edmonson W., Afghah F., et al. Optimal multiple access protocol for inter-satellite communication in small satellite system. Proc. of the 4S Small Satellite Systems and Services Symposium. 2014. P. 1–15.
  23. Tapley B.D., Bettadpur S., Watkins M., et al. The gravity recovery and climate experiment: Mission overview and early results. Geophysical Research Letters. 2004. V. 31. № 9.
  24. Baguio M., Grace Master Teachers. Amazing GRACE: NASA’s gravity recovery and climate experiment. Proc. of Lunar and Planetary Science Conference. 2008. P. 18–22.
  25. Orr N.G., Eyer J., Larouche B.P., et al. Precision formation flight: The Can X-4 and Can X-5 dual nanosatellite mission. ESA Special Publication. 2008. P. 1–10.
  26. Landgraf M., Mestreau-Garreau A. Formation flying and mission design for Proba-3. Acta Astronautica. 2013. V. 82. № 1. P. 137–145.
  27. Llorente J.S., Agenjo A., Carrascosa C., et al. Proba-3: Precise formation flying demonstration mission. Acta Astronautica. 2013. V. 82. № 1. P. 38–46.
  28. Gill E., Montenbruck O., D’Amico S. Autonomous formation flying for the PRISMA mission. Journal of Spacecraft and Rockets. 2007. V. 44. № 3. P. 671–681.
  29. Ardaens J.S., Kahle R., Schulze D. In-flight performance validation of the TanDEM-X autonomous formation flying system. International Journal of Space Science and Engineering. 2014. V. 2. № 2. P. 157–170.
  30. Pitz W., Miller D. The TerraSAR-X satellite. IEEE Transactions on Geoscience and Remote Sensing. 2010. V. 48. № 2. P. 615–622.
  31. Zhang H., Gurfil P. Distributed control for satellite cluster flight under different communication topologies. Journal of Guidance Control & Dynamics. 2015. V. 39. № 3. P. 1–11.
  32. Radhakrishnan R., Edmonson W., Afghah F., et al. Survey of inter-satellite communication for small satellite systems: physical layer to network layer view. IEEE Communications Surveys & Tutorials. 2016. V. 18. № 4. P. 2442–2473.
  33. Kaplan E.D., Hegarty C.J. Understanding GPS: Principles and applications. 2nd Ed. London: Artech House Inc. 2006.
  34. Taylor J., Barnes E. GPS current signal-in-space navigation performance. Proc. of the National Technical Meeting of the Institute of Navigation. 2005. P. 385–393.
  35. Bertiger W., Bar-Sever Y., Desai S., et al. GRACE: millimeters and microns in orbit. Gdgps Net. 2002. P. 2022–2029.
  36. Park R., Konopliv A., Yuan D.N., et al. High-resolution lunar gravity from the gravity recovery and interior laboratory mission. Proc. of the 23rd AAS/AIAA Spaceflight Mechanics Meeting. AAS 13-272.
  37. Klipstein W.M., Arnold B.W., Enzer D.G., et al. The lunar gravity ranging system for the gravity recovery and interior laboratory (GRAIL) mission. Space Science Reviews. 2013. V. 178. № 1. P. 57–76.
  38. Dunn C., Bertiger W., Franklin G., et al. The Instrument on NASA’s GRACE mission: Augmentation of GPS to achieve unprecedented gravity field measurements. Proc. of the International Technical Meeting of the Satellite Division of the Institute of Navigation. 2002. P. 724–730.
  39. Asmar S.W., Konopliv A.S., Watkins M.M., et al. The scientific measurement system of the gravity recovery and interior laboratory (GRAIL) mission. Space Science Reviews. 2013. V. 178. № 1. P. 25–55.
  40. Huang F., Lu X., Wu H., et al. Algorithm of intersatellite dynamic two-way time transfer based on GEO satellite. Proc. of the IEEE International Frequency Control Symposium Joint with the European Frequency and Time Forum. 2009. P. 688–691.
  41. Huang Y.J., Tseng W.H., Lin S.Y., et al. Introduction of software-defined receivers in two-way satellite time and frequency transfer. Proc. of the IEEE International Frequency Control Symposium. 2016. P. 1–26.
  42. Yao J., Skakun I., Jiang Z., et al. Comparison of two continuous GPS carrier-phase time transfer techniques. Proc. of the IEEE Frequency Control Symposium & the European Frequency and Time Forum. 2015. P. 655–661.
  43. Dach R., Hugentobler U., Schildknecht T., et al. Precise continuous time and frequency transfer using GPS carrier phase. Proc. of the IEEE International Frequency Control Symposium and Exposition. 2006. P. 329–336.
  44. Xu P.P., Zhang C.J., Lou Y.N., et al. FPGA-based all-digital clock generation method. Journal of Zhejiang University (Engineering Science). 2017. № 12. P. 2341–2347.
  45. Lou Y.N., Jin Z.H., Zhang C.J. A method of full digital clock generation with adjustable frequency and phase. Applied Mechanics & Materials. 2014. V. 599–601. P. 703–706.
  46. Vankka J., Halonen K. Spur reduction techniques in sine output direct digital synthesizer // Digital Synthesizers and Transmitters for Software Radio. 2005. P. 113–137.
  47. Xu X., Liu H., Tan W. Parameters design of 1.25 GHz low jiter charge pump PLL. Proc. of the IEEE International Conference on Electric Information and Control Engineering. 2011. P. 3418–3421.
  48. Makarov I.E., Tolstikov A.S. Metody sinkhronizatsii prostranstvenno-raznesennykh chastot, osnovannye na primenenii sputnikovykh navigatsionnykh tekhnologij. Interekspo Geo-Sibir'. 2006. T. 4. S. 212–216. (in Russian)
Date of receipt: 03.07.2023
Approved after review: 28.07.2023
Accepted for publication: 21.08.2023