350 rub
Journal Information-measuring and Control Systems №4 for 2023 г.
Article in number:
Investigation of the possibilities of using an electromagnetic suspension to evaluate the design parameters of a small spacecraft
Type of article: scientific article
DOI: https://doi.org/10.18127/j20700814-202304-06
UDC: 621.318
Authors:

M. A. Eprintsev1, V. V. Perlyuk2

1, 2 Saint-Petersburg State University of Aerospace Instrumentation (St. Petersburg, Russia)

1 suai.eprintsev@gmail.com, 2 perlvv@mail.ru

Abstract:

The presence of various systems for holding the test object in the area of experiments in the wind tunnel distorts the experiment results. One way to solve this problem is to replace the fasteners with an electromagnetic suspension. However, its design requires taking into account many different factors.

The aim of the article is to consider the key points in the mathematical modeling of the designed electromagnetic suspension for aerodynamic research.

The presented mathematical formulas allow designing an electromagnetic suspension with the required characteristics.

It will be possible to eliminate elements that are not related to the test object from the zone of the aerodynamic experiment. This will lead to the absence of the need for mathematical processing of the results in order to eliminate the influence of model mounts in the wind tunnel. It will also allow various other experiments to be carried out, eliminating the influence of forces and moments from mounts and stands.

Pages: 40-50
For citation

Eprintsev M.A., Perlyuk V.V. Investigation of the possibilities of using an electromagnetic suspension to evaluate the design parameters of a small spacecraft. Information-measuring and Control Systems. 2023. V. 21. № 4. P. 40−50. DOI: https://doi.org/10.18127/ j20700814-202304-06 (in Russian)

References
  1. Sapozhnikov G.A., Bogoslovskij, S.V., Kizimov A.T. Teoriya i praktika izmeritel'nykh elektromagnitnykh podvesov. SPb.: GUAP. 2001. (in Russian)
  2. Eprintsev M.A., Aristov A.A. Raschet elektromagnitnogo podvesa stenda dlya demonstratsii raboty dvigatelya makhovika. Sem'desyat vtoraya mezhdunarodnaya studencheskaya nauchnaya konferentsiya GUAP. 2019. Ch. 1. S. 9–12. (in Russian)
  3. Post R.F., Ryutov D.D. The Inductrack approach to magnetic levitation. Lawrence Livermore National Laboratory. UCRL-ID-138593. April 2005.
  4. Apollonskij S.M. Teoreticheskie osnovy elektrotekhniki. Praktikum [Elektronnyj resurs]: Khrestomatiya. SPb.: Lan'. 2017. (in Russian)
  5. Li W., Li D., Zhang X., Cao J. Status and research progress of the linear rail transit system in China. Transportnye sistemy i tekhnologii. 2016. № 1 (3). S. 16–42.
  6. Poisk dokumentatsii na elektronnye komponenty [Elektronnyj resurs]. URL: http://www.Alldatasheet.com (data obrashcheniya: 29.03.2023). (in Russian)
  7. Bul' O.B. Metody rascheta magnitnykh sistem elektricheskikh apparatov: Magnitnye tsepi, polya i programma FEMM. M.: Akademiya. 2008. (in Russian)
  8. Vyshkov Yu.D., Kuzin A.V., Shapovalov G.K. Razvitie sistem elektromagnitnoj podveski modelej v aerodinamicheskikh trubakh. Uchenye zapiski TsAGI. 2013. Vypusk 1. S. 145–151. (in Russian)
  9. Akhmetshin T.F. Vybor chastoty napryazheniya pitaniya Sertifikatsiya aviatsionnoj tekhniki. Ufa: FGBOU VO «UGATU». 2013. S. 10–18. (in Russian)
  10. Kiselev S.P. Teoreticheskaya aerodinamika: Ucheb. posobie. Novosibirsk: NGTU. 2021. S. 129–151. (in Russian)
  11. Matsushita T. Superconductivity and electromagnetism. Springer Series in Solid-State Sciences. 2021. Iizuka, Japan. P. 43–49.
  12. Eprintsev M.A. Uchebno-demonstratsionnyj stend magnitnogo podvesa dlya aerodinamicheskogo eksperimenta. Sem'desyat pervaya mezhdunarodnaya studencheskaya nauchnaya konferentsiya GUAP. 2018. Ch. 1. S. 16–19. (in Russian)
Date of receipt: 30.06.2023
Approved after review: 26.07.2023
Accepted for publication: 21.08.2023