S. G. Burluckij1, Yu. A. Kuzmichev2, N. A. Ovchinnikova3
1-3 Saint-Petersburg State University of Aerospace Instrumentation (St. Petersburg, Russia)
1 sergey_burluckiy@mail.ru, 2 y.kuzmichev63@mail.ru, 3 NA_Ovchinnikova@guap.ru
The application of digital computing devices in control systems requires taking into account their dynamic properties as links that have the characteristics of a pure lag or a transport delay. Now to estimate the stability of systems containing pure lag links we use graphical criteria. We consider the possibility of using the algebraic criterion for analyzing the effect of a pure lag on the stability of automatic control systems.
The aim of the article is to improve methods of evaluation of stability of automatic control systems containing links of a pure lag.
The algorithm of approximate determination of the roots of the characteristic equation, which has the form of quasi-polynomial, has been developed. The proposed algorithm for determination of stability makes it possible to define the requirements to the information characteristics of digital computational devices in order to provide stability and reserves of stability of systems of automatic control.
The proposed algorithm allows us to form requirements for the characteristics of devices whose dynamic properties are described by equations with a pure lag at the stage of designing automatic control systems.
Burluckij S.G., Kuzmichev Yu.A., Ovchinnikova N.A. Application of an algebraic criterion for assessing the stability of automatic control systems containing links with a transport delay. Information-measuring and Control Systems. 2023. V. 21. № 4. P. 14−18. DOI: https://doi.org/10.18127/j20700814-202304-02 (in Russian)
- Tkhan V.Z., Berchuk D.Yu. Sistemy avtomaticheskogo upravleniya ob''ektami s zapazdyvaniem: robastnost', bystrodejstvie, sintez. Programmnye produkty i sistemy. 2017. T. 30. № 1. S. 45–50. (in Russian)
- Dolgij Yu.F., Surkov P.G. Matematicheskie modeli dinamicheskikh sistem s zapazdyvaniem. Ekaterinburg: Izdatel'stvo Ural'skogo universiteta. 2012. (in Russian)
- Tkhan V.Z., Dement'ev Yu.N., Goncharov V.I. Povyshenie tochnosti rascheta sistem avtomaticheskogo upravleniya s zapazdyvaniem. Programmnye produkty i sistemy. 2018. T. 31. № 3. S. 521–526. (in Russian)
- Stavitskij V.N. Algoritm identifikatsii transportnoj zaderzhki konvejera. Nauchnye trudy Donetskogo natsional'nogo tekhnicheskogo universiteta. Ser. «Vychislitel'naya tekhnika i avtomatizatsiya». 2011, Vypusk 20 (182). S. 58–65. (in Russian)
- Nikolaev E.V. Tekhnologicheskie ob''ekty vtorogo poryadka s zapazdyvaniem. Molodoj uchenyj. 2017. № 23 (157). S. 149–152. [Elektronnyj resurs]. URL: https://moluch.ru/archive/157/44323/. (in Russian)
- Borodenko V.A. Modelirovanie sistem s zapazdyvaniem v srede MatLab. Vestnik PGU. 2010. № 4. S. 16–27. (in Russian)
- Botoyan G.A., Arguchintsev A.V. Metody resheniya differentsial'nykh uravnenij s zapazdyvaniem [Elektronnyj resurs]. URL: http://math.isu.ru/ ru/students/docs/studconf2021/s1/Botoyan.pdf. (in Russian)
- Kurganov V.V., Tsavnine A.V. Upravlenie ob''ektom s zapazdyvaniem. Avtomatika i programmnaya inzheneriya. 2015. № 2 (12). S. 9–13. (in Russian)
- Fedoseev B.T. Ob analize sistem avtomaticheskogo regulirovaniya so zvenom zaderzhki v konture [Elektronnyj resurs]. URL: http://model.exponenta.ru.
- Sabanovic A., Ohnishi K., Yashiro D., Sabanovic N., Baran E.A. Motion control systems with network delay. Automatika. 2010. V. 51. № 2. P. 119–126.
- Grushun A.I., Grushun T.A. Parametricheskij analiz na EVM ustojchivosti sistem avtomaticheskogo upravleniya s zapazdyvaniem. The Scientific Heritage. 2022. № 90. S. 128–132. (in Russian)