V.M. Nedashkovskiy1, S.A. Sakulin2, I.M. Sidyakin3, E.A. Tikhomirova4, I.G. Borovik5
1−5 Bauman Moscow State Technical University (Moscow, Russia)
The article considers the problem of identifying the parameters of dynamic systems with a dead zone of an elastic element and quadratic friction. To identify the parameters of a dynamic system, the method of harmonic linearization is used, as well as methods of mathematical statistics. The purpose of the study is to improve the accuracy and efficiency of identifying the parameters of such dynamic systems in the process of developing and improving existing devices, as well as for newly created prototypes.
A variant of the algorithm is proposed – an algorithm for identifying dynamic systems with a dead zone of an elastic element and quadratic friction. The computational experiment showed that the errors in the identification of the system parameters are comparable with the errors in the measurements of the experimental readouts of the hodograph of this system. As a measure of proximity between the experimentally obtained points of the system hodograph and the hodograph of the resulting model of the identified system, the sum of the squares of the deviation modules is used.
The dynamic system identification algorithm proposed in the article is based on the application of dynamic system analysis methods, in particular, the harmonic linearization method. This algorithm is a refinement of the traditional analytical system identification method and can be used to identify real devices in the process of their development and improvement, as well as a component of one or another hybrid identification method. The conducted numerical experiment showed the operability and high accuracy of the results of the algorithm. This work is a continuation of the series of works by the authors devoted to the analytical identification of dynamic systems that differ in the composition of their nonlinear elements. Taken together, these works form a set of identification algorithms that make it possible to cover a fairly wide class of dynamical systems in various applied fields.
Nedashkovskiy V.M., Sakulin S.A., Sidyakin I.M., Tikhomirova E.A., Borovik I.G. Identification of a dynamic system with a dead zone of elastic element and quadratic friction. Information-measuring and Control Systems. 2023. V. 21. № 1. P. 5−11. DOI: https://doi.org/10.18127/j20700814-202301-01 (in Russian)
- Chernousko F.L., Bolotnik N.N. Mobilnye roboty, upravlyaemye dvizheniem vnutrennikh tel. Trudy instituta matematiki i mekhaniki UrO RAN. 2010. T. 16. № 5. S. 213−222. (in Russian)
- Akulenko L.D., Leshchenko D.D., Kozachenko T.A. Kvazioptimalnoe tormozhenie v soprotivlyayushcheisya srede vrashchenii tela s podvizhnoi massoi, svyazannoi s telom dempferom s kvadratichnym treniem. Izvestiya RAN. Teoriya i sistemy upravleniya. 2018. № 5. S. 3−8. (in Russian)
- Smelyagin A.I., Yukhnevich I.V. Dinamicheskii analiz ispolnitelnykh mekhanizmov vozvratno-vrashchatelnykh peremeshivayushchikh ustroistv. Problemy mekhaniki sovremennykh mashin. 2012. S. 155−159. (in Russian)
- Boikov I.V., Krivulin N.P. Metody identifikatsii dinamicheskikh sistem. Programmnye sistemy: teoriya i prilozheniya. 2014. T. 5. № 5(23). S. 79−96. (in Russian)
- Tsibizova T.Yu., Malakhov N.A. Sposoby identifikatsii dinamicheskikh sistem upravleniya. Perspektivy nauki. 2019. № 12. S. 66−71. (in Russian)
- Bolodurina I.P., Reshetnikov V.N., Taspaeva M.G. Primenenie i adaptatsiya neirosetevykh tekhnologii v zadache identifikatsii dinamicheskikh ob'ektov. Programmnye produkty, sistemy i algoritmy. 2012. № 1. (in Russian)
- Voronova N.P., Kovalev S.M., Shabelnikov A.N. Identifikatsiya i otsenivanie sostoyanii nechetkikh dinamicheskikh sistem. Izvestiya Yuzhnogo federalnogo universiteta. Tekhnicheskie nauki. 2016. № 6(179). S. 128−130. (in Russian)
- Santoso F., Garratt M.A., Anavatti S.G. Adaptive neuro-fuzzy inference system identification for the dynamics of the AR. drone quadcopter. IEEE International Conference on Sustainable Energy Engineering and Application (ICSEEA). 2016. S. 55−60.
- Quan J. et al. Comparative analysis of novel drafting devices and traditional roller drafting device in ring spinning on the acceleration point distribution and yarn properties. Journal of Textile Institute. 2021. T. 112. № 12. S. 1965−1973.
- Pavlov Yu.N. i dr. Metod garmonicheskoi linearizatsii v zadache identifikatsii nelineinykh dinamicheskikh sistem. Mashinostroenie i kompyuternye tekhnologii. 2014. № 4. S. 382−397. (in Russian)
- Pavlov Yu.N., Nedashkovskii V.M., Tikhomirova E.A. Identifikatsiya nelineinykh dinamicheskikh sistem s zadannymi tipami nelineinosti po godografam. Mashinostroenie i kompyuternye tekhnologii. 2014. № 10. S. 308−327. (in Russian)
- Nedashkovskii V.M., Sakulin S.A., Tikhomirova E.A., Borovik I.G. Identifikatsiya nelineinoi sistemy s zonoi nechuvstvitelnosti uprugogo elementa. Dinamika slozhnykh sistem - XXI vek. 2021. T. 15. № 4. S. 36−43. DOI: 10.18127/j19997493-202104-05. (in Russian)
- Nedashkovskii V.M., Sakulin S.A., Tikhomirova E.A., Borovik I.G. Identifikatsiya dinamicheskoi sistemy s zonoi nechuvstvitelnosti uprugogo elementa i sukhim treniem po godografam. Transportnoe mashinostroenie. 2022. № 7. S. 9−18. (in Russian)