350 rub
Journal Information-measuring and Control Systems №3 for 2020 г.
Article in number:
Conceptual model of technical diagnostics of onboard equipment of autonomous spacecraft based on optimal reconfiguration under a priori uncertainty
DOI: 10.18127/j20700814-202003-05
UDC: 629.7.05
Authors:

A.I. Loskutov – Dr.Sc.(Eng.), Professor, 

Head of Department of Telemetric Systems, Complex Processing and Information Security,  Mozhaysky Military Space Academy (Saint Petersburg)

E-mail: rujenz@mail.ru

E.A. Ryakhova – Post-graduate Student, 

Department of Telemetric Systems, Complex Processing and Information Security, 

Mozhaysky Military Space Academy (Saint Petersburg)

E-mail: ryakhova1986@mail.ru

V.I. Gorbulin – Dr.Sc.(Eng.), Professor, 

Department of Onboard Electrical Equipment and Power Systems of Aircraft, 

Mozhaysky Military Space Academy (Saint Petersburg)

E-mail: v_gorbulin@mail.ru

Abstract:

This paper defines a promising approach to solving the problem of technical diagnostics of onboard equipment of spacecraft in Autonomous operation on the basis of optimal reconfiguration under a priori uncertainty.

Goal is to improve the efficiency and survivability of Autonomous spacecraft in the event of various types of failures.

A conceptual description of identification, technical condition monitoring, search for the location and cause of the fault, as well as reconfiguration of the onboard equipment of spacecraft in the form of interconnected subsystems and processes aimed at improving the efficiency and survivability of Autonomous spacecraft in the event of various types of faults is presented.

The idea of creating a special mathematical support for advanced control and diagnostic complexes of Autonomous spacecraft with the function of adaptive technical diagnostics is proposed. The possibility of using the conceptual model in the construction of systems for technical diagnostics of robotic products for various purposes as an element of the artificial intelligence system in solving problems of fault assessment and adequate response to faults that occur in the equipment is not excluded.

Pages: 43-55
References
  1. Dmitriev A.K., Yusupov R.M. Identifikatsiya i tekhnicheskaya diagnostika. MO SSSR. 1987. 521 s. (In Russian).
  2. Dmitriev A.K. Modeli i metody analiza tekhnicheskogo sostoyaniya bortovykh sistem. SPb.: VIKU im. A.F. Mozhaiskogo. 1999. 171 s. (In Russian).
  3. Davydov P.S. Tekhnicheskaya diagnostika radioelektronnykh ustroistv i sistem. M.: Radio i svyaz. 1988. 256 s. (In Russian).
  4. Efimov V.V. Neiropodobnye seti v bortovykh informatsionno-upravlyayushchikh kompleksakh letatelnykh apparatov. SPb.: VIKU im. A.F. Mozhaiskogo. 1996. 116 s. (In Russian).
  5. Kalinin V.N. Teoreticheskie osnovy sistemnykh issledovanii. Kratkii avtorskii kurs. SPb.: VKA im. A.F. Mozhaiskogo. 2013. 278 s. (In Russian).
  6. Kirilin A.N., Akhmetov R.N., Sologub A.N., Makarov V.P. Metody obespecheniya zhivuchesti nizkoorbitalnykh avtomaticheskikh KA zondirovaniya Zemli: matematicheskie modeli, kompyuternye tekhnologii. M.: Mashinostroenie. 2010. 384 s. (In Russian).
  7. Kochelaev Yu.S. Avtomatizirovannye ispytatelnye kompleksy. Vypusk 3. Optimizatsiya algoritmov avtomatizirovannogo testovogo kontrolya. MO SSSR. 1992. 120 s. (In Russian).
  8. Nazarov A.V., Loskutov A.I. Neirosetevye algoritmy prognozirovaniya i optimizatsii sistem. SPb.: Nauka i tekhnika. 2003. 384 s. (In Russian).
  9. Stoilik Yu.B. Podderzhanie gotovnosti letatelnykh apparatov v polete. MO SSSR. 1989. 144 s. (In Russian).
  10. Struchenkov V.I. Diskretnaya optimizatsiya. Modeli, metody, algoritmy resheniya prikladnykh zadach. M.: SOLON-Press. 2016. 192 s. (In Russian).
  11. Levin M.Sh. O rekonfiguratsii reshenii v kombinatornoi optimizatsii. Informatsionnye protsessy. 2016. T. 16. № 4. S. 414−429. (In Russian).
  12. Pavlov A.N. Modeli i metody planirovaniya rekonfiguratsii slozhnykh obieektov s perestraivaemoi strukturoi. Avtoref. dis. … d.t.n. 05.13.01. SPb.: In-t informatiki i avtomatizatsii RAN. 2014. 39 s. (In Russian).
  13. Zemlyakov S.D., Rutkovskii V.Yu., Silaev A.V. Rekonfiguratsiya sistem upravleniya letatelnymi apparatami pri otkazakh. Avtomatika i telemekhanika. 1996. № 1. S. 3−7. (In Russian).
  14. Sokolov N.L. Osnovnye printsipy diagnostiki rabotosposobnosti bortovoi apparatury avtomaticheskikh KA i vyrabotki rekomendatsii po ustraneniyu neshtatnykh situatsii. Uspekhi sovremennogo estestvoznaniya. 2007. № 6. S. 16−20. (In Russian).
  15. Sokolov N.L., Udaloi V.A. Ispolzovanie raschetno-logicheskikh sistem dlya povysheniya effektivnosti upravleniya avtomaticheskimi KA. Uspekhi sovremennogo estestvoznaniya. 2004. № 11. S. 70−74. (In Russian).
  16. Loskutov A.I., Vecherkin V.B., Shestopalova O.L. Avtomatizatsiya kontrolya sostoyaniya slozhnykh tekhnicheskikh sistem na osnove ispolzovaniya konechno-avtomatnoi modeli i neirosetevykh struktur. Informatsionno-upravlyayushchie sistemy. 2012. № 2(57). S. 74−81. (In Russian).
  17. Loskutov A.I., Gorbulin V.I., Karpushev S.I., Ryakhova E.A. Reshenie zadachi o rantse na osnove dinamicheskoi neironnoi seti KHopfilda. Nelineinyi mir. 2019. № 3. S. 25−35. DOI: 10.18127/j20700970-201903-03. (In Russian).
  18. Maltsev G.N., Nazarov A.V., Yakimov V.L. Issledovanie protsessa diagnostirovaniya bortovoi apparatury avtomaticheskikh kosmicheskikh apparatov s ispolzovaniem diskretno-sobytiinoi imitatsionnoi modeli. Trudy SPIIRAN. 2018. № 1(56). S. 95−121. (In Russian).
Date of receipt: 5 марта 2020 г.