350 rub
Journal Information-measuring and Control Systems №8 for 2016 г.
Article in number:
Data visualization of ship collision avoidance system
Authors:
V.M. Grinyak - Ph.D. (Eng.), Associate Professor, Far Eastern Federal University (FEFU) (Vladivostok). E-mail: victor.grinyak@gmail.com Yu.S. Ivanenko - Student, Vladivostok State University of Economics and Service (VSUES), E-mail: yurown92@yahoo.com A.S. Devyatisilny - Dr.Sc. (Eng.), Professor, Leading Research Scientist, Institute of Automation and Control Processes, FEBRAS (IACP FEBRAS) (Vladivostok). E-mail: devyatis@iacp.dvo.ru
Abstract:
The paper discusses the problem of marine traffic control. A model of the relative motion of two vessels is considered. Ma-ritime traffic control is an exceptionally large scientific and technical challenge. In practice, such control is implemented by onshore vessel traffic systems (VTSs), i.e., by specialized companies, whose main task is to prevent dangerous situations, such as ship collisions. The estimation of the parameters of the path of the motion of each vessel (coordinates, velocities, etc.) and their extrapolation are the methodological basis for the recognition of the dangerously close approach of vessels. If the vessels are identified to be approaching each other dangerously, the traffic control system generates an alarm and recommendations to modify the path of the motion. The control decision that ensures the safety of the traffic depends on a number of factors: the velocity of the vessels, the distance between them, their size, maneuverability, and the characteristics of the path. The prediction of shipping traffic always has an element of uncertainty, which requires the formalization of the verbal concept of a "dangerous situation" with the identification of different danger levels such as - very dangerous,? - dangerous,? and - safe. - Danger levels are determined based on experience and navigation practice. This approach allows the ship driver and the coastal VTS operator to regulate their actions: to make different types of decisions in situations with different danger levels and, thereby, to reduce the degree of uncertainty in making specific decisions. This paper is devoted to the study of a collision avoidance system for ships that makes it possible to detect dangerous situations and estimate the danger level by a continuous value using the ideas of fuzzy logic systems. The paper introduces a new approach to displaying information on targets. The proposed display visualizes three types of information: targets - motion parameters (typical for target tracking), combinations of own course and speed which collide with those targets (typical for Collision Threat Parameters Area display by Mitrofanov and Degree, Lefevre model) and combinations of own course and speed which are not compliant with fuzzy logic risk assessment systems in this case (based on ships motion parameters). A superposition of the last two types of data enables a navigator to quickly choose a collision avoidance maneuver which is sufficient. The paper includes a description of the proposed visualization technique as well as examples of visualized data for some encounter situations in Nakhodka bay.
Pages: 52-60
References

 

  1. Tam Ch. K., Bucknall R., Greig A. Review of collision avoidance and path planning methods for ships in close range encounters // Journal of Navigation. 2009. V. 62. № 3. P. 455 - 476.
  2. Akmajjkin D.A., KHomenko D.B. Sovmestnoe opredelenie parametrov celi s pomoshhju sudovojj RLS i transpondera AIS // EHkspluatacija morskogo transporta. 2010. № 4. S. 48-51.
  3. Smetanin S.I., Ignatjuk V.A., Ganjushkin A.L. Sposob organizacii rasshirennojj sistemy sputnikovogo GPS-monitoringa // Informacionno-izmeritelnye i upravljajushhie sistemy. 2015. № 12. S. 62-66.
  4. Huges S.T. When is a VTS is not a VTS // Journal of Navigation. 2009. V. 62. № 3. P. 439-442.
  5. Maleev P.I., Ledenev N.I. Osobennosti, sostojanie i perspektivy razvitija e-navigacii morskikh obektov // Navigacija i gidrografija. 2012. № 33. S. 16-20.
  6. Degre T., Lefevre X. A collision avoidance system // Journal of Navigation. 1981. V. 34. P. 294-302.
  7. Mitrofanov O. An anti-collision indicator // Journal of Navigation. 1968. V. 21. P. 163-170.
  8. Grinjak V.M., Trofimov M.V. Model verojatnostnogo tipa dlja zadachi preduprezhdenija ob opasnom sblizhenii morskikh sudov // Transport: nauka, tekhnika, upravlenie. 2015. № 10. S. 18-22.
  9. Grinjak V.M., Devjatisilnyjj A.S. EHkspertnoe ocenivanie sostojanija bezopasnosti morskojj akvatorii s pomoshhju nejjro-nechetkojj seti // Nejjrokompjutery: razrabotka, primenenie. 2015. № 12. S. 3-11.
  10. Grinjak V.M., Devjatisilnyjj A.S. Nechetkaja sistema raspoznavanija opasnogo sblizhenija sudov na morskikh akvatorijakh // Vestnik kompjuternykh i informacionnykh tekhnologijj. 2014. № 11. S. 36-42.
  11. Szlapczynski R., Szlapczynska J. A target information display for visualising collision avoidance manoeuvres in various visibility conditions // Journal of Navigation. 2015. V. 68. P. 1041-1055.
  12. Burmaka A.I. Strategija raskhozhdenija sudov v situacii chrezmernogo sblizhenija // Vestnik gosudarstvennogo universiteta morskogo i rechnogo flota im. admirala S.O. Makarova. 2014. № 1. S. 20-22.
  13. Derjabin V.V. Issledovanie otkazoustojjchivosti nejjrosetevojj sistemy schislenija puti sudna // Transport: nauka, tekhnika, upravlenie. 2015. № 9. S. 46-51.
  14. Devjatisilnyjj A.S., Dorozhko V.M., Grinjak V.M. Informacionno-tekhnologicheskie aspekty obespechenija bezopasnosti dvizhenija na morskikh akvatorijakh // Nauchno-tekhnicheskaja informacija. Serija 2: Informacionnye processy i sistemy. 2003. № 7. S. 11-14.
  15. Konoplev M.A. Primenenie apparata nechetkojj logiki dlja opredelenija urovnja opasnosti stolknovenija // EHkspluatacija morskogo transporta. 2009. № 2. S. 34-39.
  16. Bobyr M.V. Vlijanie chisla pravil na obuchenie nechetko-logicheskojj sistemy // Vestnik kompjuternykh i informacionnykh tekhnologijj. 2014. № 11. S. 28-35.
  17. Lelekov S.G., Ljakh A.M. Nechetkijj vyvod v adaptivnykh taksonomicheskikh ehkspertnykh sistemakh // Informacionnye tekhnologii. 2015. № 12. S. 890-895.
  18. Golovchenko B.S., Grinjak V.M. Informacionnaja sistema sbora dannykh trafika morskojj akvatorii // Nauchno-tekhnicheskaja informacija. Serija 2: Informacionnye processy i sistemy. 2014. № 8. S. 24-28.