350 rub
Journal Information-measuring and Control Systems №7 for 2016 г.
Article in number:
Sequence-inference method of pathologies biomedical objects by x-ray imagery
Authors:
A.P. Samoylenko Ph.D.(Eng.), Professor, Southern Federal University, the Institute of Radio Systems and Management (Taganrog) A.V. Pribylskiy Post-graduate Student, Southern Federal University, the Institute of Radio Systems and Control (Taganrog). E-mail: Pribylsku.al@mail.ru O.A. Usenko Ph.D. (Eng.), Associate Professor, Southern Federal University, the Institute of Radio Systems and Control (Ta-ganrog). E-mail: usenko_olga77@mail.ru
Abstract:
The main direction development of modern systems medical diagnostics associated with the development of computer processing results medical research. A significant portion of these research results are digital (or analog, after digitization) image (tomography, ECG, x-rays, etc) received in various medical institutions. This paper presents an original method of gradual and complex diagnosis of the evolution ENT processes in paranasal and frontal sinuses of patients in the absence benchmarks and examples pathologies. The authors proposed a method, in which a digitized x-ray image is divided into segments with the same dimension and is determined by the brightness of the pixels in each segment. Applied mathematical apparatus of logic sequence for the formation variational series and determine its main quantitative characteristics based on which the construction topologically-analytical model the textured image. The principles of numerical classification pathological areas in the absence of reference values. The developed method is applicable in conditions when it is impossible to form a concept of the reference state values patients and allows the diagnosis even in low-contrast images, eliminates uninformative to determine the pathology of the individual patient, because you are comparing the brightness of pixels of the same image. The method is based on the mathematical apparatus of the disclosure a serial-logical determinants, which allows not only to obtain a variation series, but keep the a priori topological address of a pixel, segment, area of interest in a biological object, as demonstrated at the example of diagnosing pathologies of the frontal and maxillary region, as well as to move from image to a mathematical representation in the form of matrices, to be described analytically, which has made it possible to structure the contents of the frontal sinus and to determine its topological structure. The proposed method can be used as a basis system software computer tomography digital x-ray apparatus for the quantitative analysis and assessment the IBR, estimating the information content aerial images of the earth's surface.
Pages: 3-17
References

 

  1. Doronicheva A.V., Savin S.Z. Metody raspoznavanija medicinskikh izobrazhenijj dlja zadach kompjuternojj avtomatizirovannojj diagnostiki // Sovremennye problemy nauki i obrazovanija. 2014. № 4.
  2. Posvaljuk N.EH., Kosykh N.EH., Barabash P.I., Savin S.Z. Metod kompjuternojj avtomatizirovannojj diagnostiki v zadachakh raspoznavanija medicinskikh izobrazhenijj // Nauchnyjj ehlektronnyjj arkhiv. URL: http://econf.rae.ru/article/7725.
  3. MazurovA.I. Zritelnaja sistema kak konechnoe zveno sistem medicinskojj introskopii // Medicinskaja tekhnika: Nauchno-tekhnicheskijj zhurnal. Mezhdunarodnoe nauchno-tekhnicheskoe obshhestvo priborostroitelejj i metrologov, VNII medicinskogo priborostroenija RAMN. 2006. № 2. S. 15-18.
  4. Volkov A.G. Lobnye pazukhi. Rostov-n/Donu. 2000.
  5. Gorelik A.L., Skripkin V.A. Metody raspoznavanija. M.: Vysshaja shkola. 1984. 208 s.
  6. Lepskijj A.E., Bronevich A.G. Matematicheskie metody raspoznavanija obrazov. Taganrog: Izd-vo TTI JUFU. 2009. 155 s.
  7. Spiridonov I.N. Metody avtomatizirovannojj morfometrii mediko-biologicheskikh izobrazhenijj // Biomedicinskie tekhnologii i radioehlektronika. M.: Radiotekhnika. 2003. № 11. S. 4-13.
  8. Simonov E.N. Klassifikacija tomograficheskikh metodov issledovanijj // Med. tekhnika. 2004. № 4. S. 33-38.
  9. Malov A.M., SHeremeteva T.A., Filippov G.N., Filippov V.G. Kompjuternaja obrabotka biomedicinskikh mnogokanalnykh izobrazhenijj s ispolzovaniem vizualizacii mery skhodstva s ehtalonom // Izv. vuzov. Priborostroenie. 2009. T. 52. № 8. S. 74-79.
  10. Nejjmark JU.I., Batalova Z.S., Vasin JU.G., Brejjdo M.D. Raspoznavanie obrazov i medicinskaja diagnostika. M.: Nauka. 1972. 328 s.
  11. Sirota A.A., Solomatin A.I. Poisk mnozhestva obektov na osnove invariantnykh preobrazovanijj ehtalonnykh fragmentov izobrazhenija // Informacionno-izmeritelnye i upravljajushhie sistemy. 2010. T. 8. № 6. S. 8-15.
  12. Popechitelev E.P. Problemy sinteza biotekhnicheskikh sistem // Medicinskaja tekhnika. 2013. № 2 (278). S. 1-6.
  13. Poljakov O.A. Vvedenie v osnovy informacionnojj mediciny. SPb.: Izd-vo SPbGPU. 2005. 150 s.
  14. Patent RF №2405432. Sposob cifrovojj diafanograficheskojj diagnostiki frontitov / A.G. Volkov, K.K. Groshkov,  A.P. Samojjlenko. 2010.
  15. Samojjlenko A.P., Pribylskijj A.V., Volkov A.G., Puzhaev S.I. Sposob diagnostiki patologijj okolonosovykh pazukh putem raspoznavanija obrazov. Zajavka №2014131689 ot 30.07.2014.
  16. Pavlov E.A., Gushhina O.N., Priorov A.L., KHrjashhev V.V. Neehtalonnyjj algoritm ocenki kachestva izobrazhenijj s ispolzovaniem diskretnogo kosinusnogo preobrazovanija // Uspekhi sovremennojj radioehlektroniki. 2013. № 11. S. 3-13.
  17. Efimov A.N., Kuteev V.M. Algoritmy bezehtalonnojj klassifikacii znachenijj sluchajjnykh velichin // Sb. trudov «Adaptivnye sistemy i ikh prilozhenija». Novosibirsk: Nauka. 1978. S. 125-130.
  18. Kostrov B.V. Osobennosti formirovanija aehrokosmicheskikh izobrazhenijj radiotekhnicheskimi sistemami // Proektirovanie i tekhnologija ehlektronnykh sredstv. 2011. № 1. S. 41-43.
  19. Kremer N.SH. Teorija verojatnostejj i matematicheskaja statistika. M.: JUNITI-DATA. 2010. 551 s.
  20. Levin V.I. Beskonechnoznachnaja logika v zadachakh kibernetiki. M.: EHnergoatomizdat. 1986.
  21. Levin V.I. Strukturno-logicheskie metody issledovanija slozhnykh sistem s primeneniem EHVM. M.: Nauka. 1987.
  22. Patent RF Kl. 7 G 05 B 23/02 №2198418. Sposob centralizovannogo kontrolja n obektov / A.P. Samojjlenko,  O.A. Usenko. Bjul. № 4. 2003.
  23. Samojjlenko A.P., Pribylskijj A.V. Sintez logicheskikh kontrollerov vvoda rentgenograficheskojj vizualnojj informacii o sostojanii biologicheskogo obekta // Dinamika slozhnykh sistem. 2015. T. 9. № 3. S. 85-96.
  24. Dmitriev A.K., Malcev P.A. Osnovy teorii postroenija i kontrolja slozhnykh sistem. M.: EHnergoatomizdat. 1988. 350 s.
  25. Ksenev N.I., Syrjamkin V.I., SHidlovskijj S.V. Perestraivaemye struktury v zadachakh upravlenija i issledovanie algoritmov obrabotki izobrazhenijj poverkhnosti dlja ocenki deformacii tverdykh tel // Telekommunikacii. 2007. № 3. S. 14-17.
  26. Bogomolov A.V., Gridin L.A., Kukushkin JU.A., Ushakov I.B. Diagnostika sostojanija cheloveka: matematicheskie podkhody. M.: Medicina. 2003. 464 s.