350 rub
Journal Information-measuring and Control Systems №1 for 2016 г.
Article in number:
The algorithm of angular orientation parameters definition for short-range unmanned aerial vehicle
Authors:
S.V. Kruglikov - Ph.D. (Military), Associate Professor, OJSC - AGAT - Control Systems - (Minsk, Republic of Belarus). E-mail: shabanov@cosmostv.by D.A. Saharuk - Ph.D. (Eng.), Science-degree, Military Academy of the Republic of Belarus (Minsk). E-mail: Saharyk@mail.ru A.B. Sivashko - Employee, Ltd "Aerosistema" (Minsk, Republic of Belarus). E-mail: sivashko@mail.ru V.P. Shabanov - Ph.D. (Eng.), Associate Professor, Ltd "Aerosistema" (Minsk, Republic of Belarus). E-mail: shabanov@cosmostv.by
Abstract:
Article is devoted to the development of algorithmic software strapdown inertial navigation system course and vertical (Bis-cuit), ability to calculate the required parameters of the angular orientation of the small-sized UAVs as in the presence of correction signals from external sources, as well as in stand-alone mode ( regardless of the length of signal correction). Al-gorithm for determining the parameters of the angular orientation is a key element of algorithmic support strapdown inertial navigation system (SINS) as continuity, accuracy and completeness of the information about the angular position directly affect the safety of the flight of unmanned aerial vehicles (UAVs). The article describes an algorithm for determining the parameters of the angular orientation of the short-range UAV based on the corrected quaternion equations orientation parameters Rodrigues - Hamilton. Since the algorithm for determining the orientation of the UAV using only measurements of MEMS gyroscopes (MMG) is asymptotically unstable, the article proposed modification of the algorithm by introducing the angular orientation quaternion equation UAV positional feedback signals and integral offsets generated by the signals of MEMS accelerometers (MMA) and external corrective devices. Introduction positional correction helped to compensate for the accumulation of errors in determining the presence of errors vertical MMG, and the introduction of the integral correction led to (subject to adjustment algorithm for the period Shulera) invariance algorithm to active accelerations UAVs. Presented in this paper the simulation results confirm the efficiency of the algorithm and the appropriateness of its use in advanced navigation systems of moving objects.
Pages: 59-70
References

 

  1. Anuchin O.N., Emeljancev G.I.Integrirovannye sistemy orientacii i navigacii dlja morskikh podvizhnykh obektov. SPb.: GNC RF-CNII «EHlektropribor». 2003. 389 s.
  2. Antonov D.A.Malogabaritnaja kompleksnaja sistema navigacii i orientacii. 14 S.-Peterb. Mezhdunar. konf. po integrir. navigac. sistemam: Sb. materialov. SPb.: GNC RF-CNII «EHlektropribor». 2004. S. 160-164.
  3. Babich O.A.Aviacionnye pribory i navigacionnye sistemy. M.: VVIA. 1981. 645 s.
  4. Bolshakov A.A.Matematicheskoe modelirovanie raboty integrirovannojj besplatformennojj sistemy orientacii i navigacii lokalnogo naznachenija: Dis. k-ta tekhn. nauk: 05.13.18; 05.11.03. Saratov. 2004. 145 s.
  5. Brammer K., Zifling G. Filtr Kalmana - Bjusi. Determinirovannoe nabljudenie i stokhasticheskaja filtracija / pod obshh. red. I.E. Kazakova. M.: Nauka. 1982. 199 s.
  6. Bakitko R.V, i dr.GLONASS. Principy postroenija i funkcionirovanija / pod obshh. red. A.I. Perova, V.N. KHarisova. Izd.4-e, pererab. i dop. M.: Radiotekhnika. 2005. 688 s.
  7. Imitacionno-modelirujushhijj stend dinamiki poleta bespilotnogo letatelnogo apparata: komplekt RKD OKR FUIM. 467144.00.00 / VA RB, ruk. temy V.P. SHabanov. Minsk. 2012. 320 s.
  8. Krasovskijj, A.A.,Vavilov JU.A., Suchkov A.I. Sistemy avtomaticheskogo upravlenija letatelnykh apparatov. M.: VVIA. 1986. 478 s.
  9. Orlov V.A.Inercialnye izmeritelnye sistemy parametrov dvizhenija obektov na mikromekhanicheskikh datchikakh: Dis. k-ta tekhn. nauk: 05.11.16. Tula. 2007. 155 s.
  10. Pogoreloe V.A.Primenenie matric napravljajushhikh kosinusov v zadache sinteza algoritma navigacii v besplatformennykh inercialnykh navigacionnykh sistemakh letatelnykh apparatov // Mekhatronika. Avtomatizacija. Upravlenie. 2005. № 12. S. 35-40.
  11. Pomykaev I.I., Seleznev V.P., Dmitrochenko L.A. Navigacionnye pribory i sistemy. M.: Mashinostroenie. 1983. 450 c.
  12. Reznichenko V.I., Lapshina V.I. Organizacija vzaimodejjstvija sputnikovykh i avtonomnykh navigacionnykh sredstv morskikh obektov. SPb.: GNC RF-CNII «EHlektropribor». 2004. 88 s.
  13. Sakharuk D.A., SHabanov V.P. Analiz algoritmov opredelenija uglovojj orientacii malorazmernogo bespilotnogo letatelnogo apparata // Sb. nauch. st. VARB. 2009. № 16. S. 72-77.
  14. Sakharuk D.A. Matematicheskaja model avtonomnojj besplatformennojj inercialnojj navigacionnojj sistemy bespilotnogo letatelnogo apparata // Vestnik VARB. 2010. № 2(27). S. 52-60.
  15. Sakharuk D.A. Problemy primenenija MEMS-datchikov v besplatformennykh inercialnykh navigacionnykh sistemakh // IKH Voen.-nauch. konf. VA RB: tez. dokl., Minsk, 29-30 marta 2009 g. / VA RB; otv. za vyp. T.JA. Talejjkina. Minsk. 2009. S. 261.
  16. Sakharuk D.A., SHabanov V.P.Matematicheskaja model oshibok mikroehlektromekhanicheskikh datchikov // Vestnik VA RB. 2011. № 4(33). S. 100-106.
  17. Sivashko A.B., Sakharuk D.A. Issledovanie oshibok inercialnogo izmeritelnogo modulja na mikromekhanicheskikh datchikakh // Vest. VA RB. 2010. № 3(28). S. 42-48.
  18. Sivashko A.B.SHabanov V. P., Sakharuk D. A. Problemy proektirovanija pilotazhno-navigacionnogo navigacionnogo kompleksa malorazmernogo bespilotnogo letatelnogo apparata i metody ikh reshenija // 4-ja Mezhdunar. nauch. prakt. konf. po voen.-tekhn. problemam oborony i bezopasnosti, issledovaniju tekhnologijj dvojjnogo naznachenija: tez. dokl., Minsk, 20-21 maja 2009 g. / GU «BelISA»; otv. za vyp. T.JA. Talejjkina. Minsk. 2009. S. 111.
  19. Stepanov, O.A.Primenenie teorii nelinejjnojj filtracii v zadachakh obrabotki navigacionnojj informacii. SPb.: GNC RF-CNII «EHlektropribor». 2003. 369 s.