350 rub
Journal Information-measuring and Control Systems №7 for 2015 г.
Article in number:
Study of the ultimate effects on the robotic complex manipulator
Authors:
O.P. Goydin - Director, Engineering and training center of robotics, Moscow. E-mail: en.itucr@yandex.ru A.B. Zhuravlev - Ph.D.( Phys.-Math.), Senior Research Scientist, Institute for Problems in Mechanics of RAS, Moscow. E-mail: zhuravlev.alex2010@yandex.ru E.V. Kuraev - Head of Laboratory, Engineering and Training Center of Robotics, Moscow. E-mail: en.itucr@yandex.ru I.S. Nikitin - Dr.Sc. (Phys.-Math.), Leading Research Scientist, Institute for Computer Aided Design of RAS, Moscow. E-mail: i_nikitin@list.ru) V.L. Yakushev - Dr.Sc. (Phys.-Math.), Chief Research Scientist, Institute for Computer Aided Design of RAS, Moscow. E-mail: yakushev@icad.org.ru
Abstract:
Knowledge of the ultimate loads for various configurations of the modern robotic systems allows the operator to avoid invalid operations for different execution units. Ideally calculated zones of the permissible loads must be displayed on the control panel for the entire set of the manipulator execution units and technological operations. The value of the maximum permissible loads depends on the manner of their application, i.e., the point of application and direction of impact. Also it depends on which elements of structure are most loaded, because the strength properties of various elements may differ considerably. In this paper we made the spatial geometry, and finite element simulation models of typical configurations for the robotic system manipulator. The elastic stress-strain state is calculated and on this basis the ultimate loads are determined for a number of technological operations using local criterion of plasticity. The results obtained can become the basis for a technique for determination of permissible loads zones for the entire set of manipulator execution units and technological operations. Also, these results can be used during setting, adjustment and calibration of tensometric system for danger signal to the robotic system operator.
Pages: 26-31
References

 

  1. Burago N.G., ZHuravlev A.B., Nikitin I.S. Analiz naprjazhennogo sostojanija kontaktnojj sistemy «disk-lopatka» gazoturbinnogo dvigatelja // Vychislitelnaja mekhanika sploshnykh sred. 2011. T. 4. № 2. S. 5-16.
  2. Burago N.G., ZHuravlev A.B., Nikitin I.S. Modeli mnogoosnogo ustalostnogo razrushenija i ocenka dolgovechnosti ehlementov konstrukcijj. // Izv. RAN. MTT. 2011. № 6. S. 22-33.
  3. Aljamovskijj A.A., Sobachkin A.A., Odincov E.V., KHaritonovich A.I., Ponomarev N.B. SolidWorks Kompjuternoe modelirovanie v inzhenernojj praktike. SPb.: BKHV-Peterburg. 2005. 799 s.
  4. Andreev V.P., Kirsanov K.B., Kostin A.V., Kuvshinov S.V., Marzanov JU.S., Pankratov D.A., Prysev E.A., Prjanichnikov V.E., Rybak T.N., KHarin K.V., SHipovalov E.A. Mobilnye tekhnologicheskie roboty i trenazhery: integracionnoe programmnoe obespechenie gruppovogo vzaimodejjstvija // Informacionno-izmeritelnye i upravljajushhie sistemy (Intellektual­nye adaptivnye roboty. 2013. T. 8. № 1-2). 2013. T. 11. № 4. S. 74-79.
  5. Frolov A.A., Birjukova E.V., Bobrov P.D., Platonov A.K., Prjanichnikov V.E. Biologicheski adekvatnye principy upravlenija ehkzoskeletonom ruki cheloveka // Informacionno-izmeritelnye i upravljajushhie sistemy (Intellektual­nye adaptivnye roboty. 2013. T. 8. № 1-2). 2013. T. 11. № 4. S. 7-18
  6. Katalinic V., Cesarec P., Kettler R., Prjanichnikov V.E. Scenarii i programmy bionicheskikh sborochnykh sistem, modeliruemykh s ispolzovaniem robotov AMUR // Informacionno-izmeritelnye i upravljajushhie sistemy (Intel­lektualnye adaptivnye roboty. 2013. T. 8. № 1-2). 2013. T. 11. № 4. S. 34-43.
  7. Frolov A.A., Biryukova E.V., Bobrov P.D., Mokienko O.A., Platonov A.K., Pryanichnikov V.E., Chernikova L.A. Principles of neurorehabilitation based on the brain-computer interface and biologically adequate control of the exoskeleton // Human Physiology. 2013. V. 39. № 2. R. 196-208.
  8. Andreev V., Kuvshinov S., Pryanichnikov V., Poduraev Yu. Education on the basis of virtual learning robotics laboratory and group-controlled robots // 24th DAAAM International Symposiumon Intelligent Manufacturing and Automation. 2013. Procedia Engineering. 2014. V. 69. R. 35-40.
  9. Pryanichnikov V., Andreev V., Bobrov P., Biryukova E., Frolov A., Kharin K., Kirsanov K., Kostin A., Kuvshinov S., Marzanov Y., Prysev E. Scientific-educational distributed laboratory - software and hardware means // Annals of DAAAM for 2012 & Proceedings of the 23rd International DAAAM Symposium. DAAAM Int. Vienna, Austria, EU. 2012. V. 23. № 1.