350 rub
Journal Information-measuring and Control Systems №7 for 2013 г.
Article in number:
Using the methods of color segmentation and semantic description of images in the «adult image» identification problem
Authors:
N.S. Belliustin, Yu.D. Kalafati, A.A. Tel-nykh, O.V. Shemagina
Abstract:
As the volume of graphical information accessible on the Internet increased, the need in automatic analysis of images and their semantic description also increased. This paper discusses the possibility of using adaptive color segmentation and semantic description of images in the "adult image" identification problem. Adaptive color segmentation requires the construction of a color model for a specific image. The obtaining of semantic features is based on use of the neuromorphic detectors of objects and their features, which were developed by the authors. It is shown that the methods described in this paper reduce significantly the false-response error. The methods and algorithms proposed in this paper can find application not only in the field of protection against undesirable information, but also in the field of semantic analysis of images, which will facilitate the solution of the image scene description problem.
Pages: 37-42
References
- Arentz WA, Olstad B. Classifying offensive sites based on image content. Computer Vision and Image Understanding. 2004. 94. P. 295-310.
- Christian X. Ries, Rainer Lienhart A survey on visual adult image recognition, Multimedia Tools and Applications, Springer Science+Business Media, 2012. http://link.springer.com/article/10.1007%2Fs11042-012-1132-y.
- Paul A. Viola, Michael J. Jones: Rapid Object Detection using a Boosted Cascade of Simple Features. CVPR (1) 2001. P. 511−518.
- Bellyustin N.S., Kalafati Ju.D., Koval'chuk A.V., Tel'ny'x A.A., Shemagina O.V., Jaxno V.G. Nejropodobny'j detektor licza. Texnicheskie osobennosti realizaczii i obucheniya. X Vseross. nauchno-texn. Konf. Nejroinformatika-2008. Sb. nauch. trudov. Ch. 2. MIFI. Moskva, yanvar' 2008. S. 123−132.
- Bellustin N., Kovalchuck A., Telnykh A., Shemagina O., Yakhno V., Kalafati Y., Vaish Abhishek, Sharma Pinki, Verma Shirshu. Instant Human Face Attributes Recognition System, (IJACSA) International Journal of Advanced Computer Science and Applications. Special Issue on Artificial Intelligence. 2011. P.112−120.
- Duan L., Cui G., Gao W., Zhang H. Adult image detection method base-on skin color model and support vector machine. In Proceedings of the 5th Asian conference on computer vision. 2002. P. 797-800.
- Jones M.J., Rehg J.M. Statistical color models with application to skin detection. Computer Vision and Image Understanding. 2002. 46(1). P. 81-96.
- Kovaˇc J., Peer P., Solina F. Human skin color clustering for face detection. In Proceedings of the IEEE Region 8 EUROCON 2003. Computer as a tool. Vol. 2. P. 144-148.
- Liao W.H., Liu M.J. Robust swimming style classification from color video. In Proceedings of the international computer symposium. 2004. P. 541-546.
- Rowley H.A., Jing Y., Baluja S. Large scale image-based adult-content filtering. In Proceedings of the 1st international conference on computer vision theory. 2006. P. 290-296.
- Yang J., Lu W., Waibe lA. Skin-colormodeling and adaptation. In Proceedings of theAsian conference on computer vision. 1998. Vol 2. P. 687-694.
- Zheng H., Daoudi M., Jedynak B. Blocking adult images based on statistical skin detection. Electron Lett Comput Vis Image Anal. 2004. 4(2). P. 1-14.
- Zheng Q.F., Zeng W., Wen G., Wang W.Q. Shape-based adult images detection. In Proceedings of the 3rd international conference on image and graphics. 2004. P. 150-153.
- Baranov V.G., Milov V.R., Zaripova Ju.X., E'pshtejn A.Ju. Intellektualizacziya sistemy' raspoznavaniya obrazov na osnove sravneniya e'ffektivnosti metodov klassifikaczii // Informaczionno-izmeritel'ny'e i upravlyayushhie sistemy'. 2010. № 2. S. 35−39.
- Baranov V.G., Kondrat'ev V.V., Milov V.R., Zaripova Ju.X. Nejrosetevy'e algoritmy' raspoznavaniya obrazov // Informaczionno-izmeritel'ny'e i upravlyayushhie sistemy'. 2007. № 11. S. 20−27.